Home
Class 12
MATHS
Ifx^(y)=e^(x)," then "(logx)^(2)y(1)=...

If`x^(y)=e^(x)," then "(logx)^(2)y_(1)=`

A

`loge`

B

`logx`

C

`log(e//x)`

D

`log(x//e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x^y = e^x \) and we need to find \( (\log x)^2 y_1 \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start with the equation: \[ x^y = e^x \] Taking the natural logarithm on both sides gives us: \[ \log(x^y) = \log(e^x) \] ### Step 2: Apply logarithmic properties Using the property of logarithms that states \( \log(a^b) = b \log(a) \), we can rewrite the equation: \[ y \log x = x \log e \] Since \( \log e = 1 \), this simplifies to: \[ y \log x = x \] ### Step 3: Solve for \( y \) From the equation \( y \log x = x \), we can isolate \( y \): \[ y = \frac{x}{\log x} \] ### Step 4: Differentiate \( y \) with respect to \( x \) Now we differentiate \( y \) using the quotient rule. The quotient rule states that if \( y = \frac{u}{v} \), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, \( u = x \) and \( v = \log x \). We find \( \frac{du}{dx} = 1 \) and \( \frac{dv}{dx} = \frac{1}{x} \). Applying the quotient rule: \[ y_1 = \frac{\log x \cdot 1 - x \cdot \frac{1}{x}}{(\log x)^2} = \frac{\log x - 1}{(\log x)^2} \] ### Step 5: Find \( (\log x)^2 y_1 \) Now we multiply \( y_1 \) by \( (\log x)^2 \): \[ (\log x)^2 y_1 = (\log x)^2 \cdot \frac{\log x - 1}{(\log x)^2} \] This simplifies to: \[ (\log x)^2 y_1 = \log x - 1 \] ### Step 6: Express \( \log x - 1 \) in terms of logarithms We can express \( \log x - 1 \) as: \[ \log x - 1 = \log x - \log e = \log\left(\frac{x}{e}\right) \] ### Final Answer Thus, we conclude that: \[ (\log x)^2 y_1 = \log\left(\frac{x}{e}\right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y)," then "(1+logx)^(2)y_(1)=

y=(logx)^(x)

If e^(x)+e^(y)=e^(x+y)" then "y_(1)=

If y=tan^(-1)((2)/(e^(-x)-e^(x)))" then "(1+e^(2x))y_(1)=

If y=e^(1+logx)," then: "(dy)/(dx)

If y=log(logx)," then "xy_(2)+x(y_(1))^(2)=

y=e^(3x).sin^(2)x.logx

Find (dy)/(dx) , when: y=(e^(x)logx)/(x^(2))

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))