Home
Class 12
MATHS
If y=xe^(y)," then "(1-y)y(1)=...

If `y=xe^(y)," then "(1-y)y_(1)=`

A

`e^(x)`

B

`e^(y)`

C

`ylogx`

D

`xlogy`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = x e^y \) and we need to find \( (1 - y) y' \), we will follow these steps: ### Step 1: Differentiate the equation \( y = x e^y \) We start by differentiating both sides of the equation with respect to \( x \). \[ \frac{dy}{dx} = \frac{d}{dx}(x e^y) \] ### Step 2: Apply the product rule Using the product rule for differentiation, we have: \[ \frac{dy}{dx} = e^y \cdot \frac{dx}{dx} + x \cdot \frac{d}{dx}(e^y) \] Since \( \frac{dx}{dx} = 1 \) and using the chain rule for \( e^y \): \[ \frac{d}{dx}(e^y) = e^y \cdot \frac{dy}{dx} \] So, we can rewrite the equation as: \[ \frac{dy}{dx} = e^y + x e^y \frac{dy}{dx} \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} - x e^y \frac{dy}{dx} = e^y \] Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx}(1 - x e^y) = e^y \] ### Step 4: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{e^y}{1 - x e^y} \] ### Step 5: Substitute \( y' \) into \( (1 - y) y' \) Now we need to find \( (1 - y) y' \): \[ (1 - y) y' = (1 - y) \cdot \frac{e^y}{1 - x e^y} \] ### Step 6: Final expression Thus, we have: \[ (1 - y) y' = \frac{(1 - y)e^y}{1 - x e^y} \] ### Final Answer The value of \( (1 - y) y' \) is: \[ (1 - y) y' = \frac{(1 - y)e^y}{1 - x e^y} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=xe^(y)," then "x(1-y)y_(1)=

If y=xe^(xy) , then (dy)/(dx) =

If y=xe^(-1//x)," then "x^(3)y_(2)-xy_(1)=

If y=1 +xe^(y) ,then (dy)/(dx) =

If y=log(e^(-x)+xe^(-x))," then " (1+x)y_(1)=

If y=xe^(xy)" and "(dy)/(dx)=(y(1+u))/(x(1-u))," then "u=

If (x_(1),y_(1)) & (x_(2),y_(2)) are the extremities of the focal chord of parabola y^(2)=4ax then y_(1)y_(2)=

If ye ^(x) +xe^(y) =1 ,then (dy)/(dx) =

If x=tanh^(-1)(y) then log_(e)((1+y)/(1-y))