Home
Class 12
MATHS
If y=xe^(y)," then "x(1-y)y(1)=...

If `y=xe^(y)," then "x(1-y)y_(1)=`

A

`-x`

B

x

C

y

D

`-y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = x e^y \), we need to find \( x(1 - y) y' \), where \( y' = \frac{dy}{dx} \). ### Step 1: Differentiate the equation \( y = x e^y \) We will use implicit differentiation on both sides of the equation. \[ \frac{dy}{dx} = e^y + x e^y \frac{dy}{dx} \] ### Step 2: Rearrange the equation Now, we can rearrange the equation to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} - x e^y \frac{dy}{dx} = e^y \] Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx} (1 - x e^y) = e^y \] ### Step 3: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{e^y}{1 - x e^y} \] ### Step 4: Substitute \( \frac{dy}{dx} \) into \( x(1 - y) y' \) Now we will substitute \( y' = \frac{dy}{dx} \) into the expression \( x(1 - y) y' \): \[ x(1 - y) \frac{dy}{dx} = x(1 - y) \left( \frac{e^y}{1 - x e^y} \right) \] ### Step 5: Simplify the expression Now we can simplify the expression: \[ x(1 - y) \frac{e^y}{1 - x e^y} \] ### Final Result Thus, the final result for \( x(1 - y) y' \) is: \[ \frac{x(1 - y)e^y}{1 - x e^y} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=xe^(y)," then "(1-y)y_(1)=

If y=xe^(-1//x)," then "x^(3)y_(2)-xy_(1)=

If y=log(e^(-x)+xe^(-x))," then " (1+x)y_(1)=

If y=1 +xe^(y) ,then (dy)/(dx) =

If x^(y)=e^(x-y)," then "(1+logx)^(2)y_(1)=

If y=xe^(xy)" and "(dy)/(dx)=(y(1+u))/(x(1-u))," then "u=

If ye ^(x) +xe^(y) =1 ,then (dy)/(dx) =

If (x_(1),y_(1)) & (x_(2),y_(2)) are the extremities of the focal chord of parabola y^(2)=4ax then y_(1)y_(2)=

If (x+y):(x-y)=53:41, then (1)/(x):(1)/(y)=?