Home
Class 12
MATHS
If x=at,y=(a)/(t)," then "(dy)/(dx)=...

If `x=at,y=(a)/(t)," then "(dy)/(dx)=`

A

`(1)/(t^(2))`

B

`t^(2)`

C

`-t^(2)`

D

`-(1)/(t^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given \(x = at\) and \(y = \frac{a}{t}\), we can use the chain rule of differentiation. Here’s the step-by-step solution: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = at \] Differentiating both sides with respect to \(t\): \[ \frac{dx}{dt} = a \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = \frac{a}{t} = a t^{-1} \] Differentiating both sides with respect to \(t\): \[ \frac{dy}{dt} = -a t^{-2} = -\frac{a}{t^2} \] ### Step 3: Use the chain rule to find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{-\frac{a}{t^2}}{a} \] ### Step 4: Simplify the expression The \(a\) in the numerator and denominator cancels out: \[ \frac{dy}{dx} = -\frac{1}{t^2} \] ### Final Answer Thus, the final result is: \[ \frac{dy}{dx} = -\frac{1}{t^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x = 4t ,y =(4)/(t) ,then (dy)/(dx)=

If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

If x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/(dx)=

If x=t^(2)+(1)/(t^(2)),y=t-(1)/(t)," then "(dy)/(dx)=

If x=(t+(1)/(t)),y=(t-(1)/(t)) , then (dy)/(dx)=?

If x=a(t+sint),y=a(1-cost)," then "(dy)/(dx)=

If x=t log t ,y =t^(t) ,then (dy)/(dx)=

If " "x=t^(2),y=t^(3) ," then "(dy)/(dx)" at "t=-1" is "

If y=t^(2)-t+1," then: "(dy)/(dx)=

If x=2at^(2),y=at^(4),"then "dy/dx=t^(2) .