Home
Class 12
MATHS
If x=2cost-cos2t,y=2sint-sin2t," then "(...

If `x=2cost-cos2t,y=2sint-sin2t," then "(dy)/(dx)=`

A

`tant`

B

`cot((3t)/(2))`

C

`tan((3t)/(2))`

D

`cott`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = 2\cos t - \cos 2t\) and \(y = 2\sin t - \sin 2t\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(t\) We start by differentiating \(y\) with respect to \(t\). \[ y = 2\sin t - \sin 2t \] Using the chain rule, we differentiate: \[ \frac{dy}{dt} = 2\cos t - \frac{d}{dt}(\sin 2t) \] Using the chain rule for \(\sin 2t\): \[ \frac{d}{dt}(\sin 2t) = 2\cos 2t \] So, we have: \[ \frac{dy}{dt} = 2\cos t - 2\cos 2t \] ### Step 2: Differentiate \(x\) with respect to \(t\) Next, we differentiate \(x\) with respect to \(t\). \[ x = 2\cos t - \cos 2t \] Differentiating: \[ \frac{dx}{dt} = -2\sin t + \frac{d}{dt}(\cos 2t) \] Using the chain rule for \(\cos 2t\): \[ \frac{d}{dt}(\cos 2t) = -2\sin 2t \] So, we have: \[ \frac{dx}{dt} = -2\sin t + 2\sin 2t \] ### Step 3: Find \(\frac{dy}{dx}\) Now, we can find \(\frac{dy}{dx}\) using the formula: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{2\cos t - 2\cos 2t}{-2\sin t + 2\sin 2t} \] ### Step 4: Simplify the expression We can simplify this expression: \[ \frac{dy}{dx} = \frac{2(\cos t - \cos 2t)}{2(-\sin t + \sin 2t)} \] The \(2\) in the numerator and denominator cancels out: \[ \frac{dy}{dx} = \frac{\cos t - \cos 2t}{-\sin t + \sin 2t} \] ### Final Result Thus, the final result for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\cos t - \cos 2t}{\sin 2t - \sin t} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x=a(2cost+cos2t),y=a(2sint+sin2t)," then "(dy)/(dx)=

If x=2cott+cos2t,y=2sint-sin2t,"find "(dy)/(dx)"at t"=(pi)/(4)

If x=2cos t-cos2t,y=2sin t-sin2t,tind(d^(2)y)/(dx^(2)) at t=(pi)/(2)

If x=2cost-cos2t , y=2sint-sin2t ,then at t=(pi)/(4) , (dy)/(dx)=

If x= 2cost+cos 2t,y=2sin t-sin 2t ,then " at " t= ( pi)/(4) ,(dy)/(dx)

If x=2cos t-cos2t,quad y=2sin t-sin2t find (d^(2)y)/(dx^(2)) at t=(pi)/(2)

If x=a(cost+tsint),y=a(sint-tcost)," then "((dx)/(dt))^(2)+((dy)/(dt))^(2)=

If x=2cost-cos2t & y=2sint-sin2t , find the value of (d^2y//dx^2) when t=(pi//2) .

x= 2 cos t -cos 2t ,y=2 sin t-sin 2t Find d y / d x

If y=sin t -cos t and x=sin t+cost , then (dy)/(dx) at t=(pi)/(6) is :