Home
Class 12
MATHS
If x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/...

If `x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/(dx)=`

A

1

B

0

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equations \(x = \frac{t + 1}{t}\) and \(y = \frac{t - 1}{t}\), we will use the chain rule of differentiation. The steps are as follows: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = \frac{t + 1}{t} \] We can rewrite \(x\) as: \[ x = 1 + \frac{1}{t} \] Now, we differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = 0 - \frac{1}{t^2} = -\frac{1}{t^2} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = \frac{t - 1}{t} \] We can rewrite \(y\) as: \[ y = 1 - \frac{1}{t} \] Now, we differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = 0 + \frac{1}{t^2} = \frac{1}{t^2} \] ### Step 3: Use the chain rule to find \(\frac{dy}{dx}\) Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{\frac{1}{t^2}}{-\frac{1}{t^2}} = -1 \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -1 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x=t^(2)+(1)/(t^(2)),y=t-(1)/(t)," then "(dy)/(dx)=

If x=a(t+t^(-1)),y=a(t-t^(-1))," then "(dy)/(dx)=

If x=a(t-(1)/(t)),y=a(t+(1)/(t)),"show that "(dy)/(dx)=(x)/(y)

If y=t^(2)-t+1," then: "(dy)/(dx)=

If x=cos^(-1)t,y=log(1-t^(2))," then "((dy)/(dx))" at "t=(1)/(2) is

If x=a(t-sin t),y=a(1-cos t), then (dy)/(dx) is equal to

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=

If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

If x=(t+(1)/(t))^(a),y=a^(t+(1)/(t)), find (dy)/(dx)