Home
Class 12
MATHS
If x=sinthetacos2theta,y=costhetasin2the...

If `x=sinthetacos2theta,y=costhetasin2theta," then "((dy)/(dx))" at "theta=(pi)/(4)` is

A

`-2`

B

2

C

`-(1)/(2)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(\theta = \frac{\pi}{4}\) given \(x = \sin \theta \cos 2\theta\) and \(y = \cos \theta \sin 2\theta\), we will use the chain rule. ### Step-by-Step Solution: 1. **Differentiate \(x\) with respect to \(\theta\)**: \[ x = \sin \theta \cos 2\theta \] Using the product rule: \[ \frac{dx}{d\theta} = \frac{d}{d\theta}(\sin \theta) \cdot \cos 2\theta + \sin \theta \cdot \frac{d}{d\theta}(\cos 2\theta) \] The derivative of \(\sin \theta\) is \(\cos \theta\) and the derivative of \(\cos 2\theta\) is \(-2\sin 2\theta\). Thus, \[ \frac{dx}{d\theta} = \cos \theta \cos 2\theta - 2\sin \theta \sin 2\theta \] 2. **Differentiate \(y\) with respect to \(\theta\)**: \[ y = \cos \theta \sin 2\theta \] Using the product rule: \[ \frac{dy}{d\theta} = \frac{d}{d\theta}(\cos \theta) \cdot \sin 2\theta + \cos \theta \cdot \frac{d}{d\theta}(\sin 2\theta) \] The derivative of \(\cos \theta\) is \(-\sin \theta\) and the derivative of \(\sin 2\theta\) is \(2\cos 2\theta\). Thus, \[ \frac{dy}{d\theta} = -\sin \theta \sin 2\theta + 2\cos \theta \cos 2\theta \] 3. **Evaluate \(\frac{dx}{d\theta}\) and \(\frac{dy}{d\theta}\) at \(\theta = \frac{\pi}{4}\)**: - Calculate \(\frac{dx}{d\theta}\): \[ \frac{dx}{d\theta} = \cos\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{2}\right) - 2\sin\left(\frac{\pi}{4}\right) \sin\left(\frac{\pi}{2}\right) \] Since \(\cos\left(\frac{\pi}{2}\right) = 0\) and \(\sin\left(\frac{\pi}{2}\right) = 1\): \[ \frac{dx}{d\theta} = 0 - 2 \cdot \frac{1}{\sqrt{2}} \cdot 1 = -\sqrt{2} \] - Calculate \(\frac{dy}{d\theta}\): \[ \frac{dy}{d\theta} = -\sin\left(\frac{\pi}{4}\right) \sin\left(\frac{\pi}{2}\right) + 2\cos\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{2}\right) \] Since \(\cos\left(\frac{\pi}{2}\right) = 0\): \[ \frac{dy}{d\theta} = -\frac{1}{\sqrt{2}} \cdot 1 + 0 = -\frac{1}{\sqrt{2}} \] 4. **Calculate \(\frac{dy}{dx}\)**: Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{-\frac{1}{\sqrt{2}}}{-\sqrt{2}} = \frac{1}{2} \] ### Final Answer: \[ \frac{dy}{dx} \text{ at } \theta = \frac{\pi}{4} \text{ is } \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x=thetasin2theta,y=thetacos2theta," then "(dy)/(dx)" at "theta=(pi)/(4) is

If x=cos theta-cos2 theta,y=sin theta-sin2 theta then (dy)/(dx) is

If x=2costheta-cos2theta,y=2sintheta-sin2theta,"find "dy/dx" at "theta=pi/2 .

If x=ae^(theta)(sintheta-costheta),y=ae^(theta)(sintheta+costheta)," then "((dy)/(dx))" at "theta=(pi)/(2) is

y = cos theta and x = sin theta (dy)/(dx) at theta=(pi)/(4) is :

if x=sin theta+theta cos theta,y=cos theta-theta sin theta then ((dy)/(dx))_(theta=(pi)/(2))=

If x=2cos theta -cos 2theta ,y=2sin theta -sin 2theta ,then (dy)/(dx) =

If x=bcos^(2)theta,y=asin^(2)theta," then "(dy)/(dx)=

x=3costheta-2cos^(3)theta,y=3sintheta-2sin^(3)theta" then find dy/dx at "theta=(pi)/(4)

If y=1- cos theta, x =1 - sin theta,then (dy)/(dx) " at " theta = (pi)/(4) is

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If x=sinthetacos2theta,y=costhetasin2theta," then "((dy)/(dx))" at "th...

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |