Home
Class 12
MATHS
If x=costheta(1+costheta),y=sintheta(1+c...

If `x=costheta(1+costheta),y=sintheta(1+costheta)," then "((dy)/(dx))" at "theta=(pi)/(2)` is

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(\theta = \frac{\pi}{2}\), we start with the given equations: \[ x = \cos \theta (1 + \cos \theta) \] \[ y = \sin \theta (1 + \cos \theta) \] Since \(x\) and \(y\) are both functions of \(\theta\), we can use the chain rule to find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] ### Step 1: Calculate \(\frac{dx}{d\theta}\) Using the product rule for differentiation: \[ \frac{dx}{d\theta} = \frac{d}{d\theta}[\cos \theta (1 + \cos \theta)] \] Let \(u = \cos \theta\) and \(v = 1 + \cos \theta\). Then: \[ \frac{dx}{d\theta} = u \frac{dv}{d\theta} + v \frac{du}{d\theta} \] Calculating \(\frac{du}{d\theta}\) and \(\frac{dv}{d\theta}\): \[ \frac{du}{d\theta} = -\sin \theta \] \[ \frac{dv}{d\theta} = -\sin \theta \] Now substituting back: \[ \frac{dx}{d\theta} = \cos \theta (-\sin \theta) + (1 + \cos \theta)(-\sin \theta) \] \[ = -\cos \theta \sin \theta - \sin \theta - \cos \theta \sin \theta \] \[ = -2\cos \theta \sin \theta - \sin \theta \] ### Step 2: Calculate \(\frac{dy}{d\theta}\) Using the product rule for \(y\): \[ \frac{dy}{d\theta} = \frac{d}{d\theta}[\sin \theta (1 + \cos \theta)] \] Let \(u = \sin \theta\) and \(v = 1 + \cos \theta\): \[ \frac{dy}{d\theta} = u \frac{dv}{d\theta} + v \frac{du}{d\theta} \] Calculating \(\frac{du}{d\theta}\) and \(\frac{dv}{d\theta}\): \[ \frac{du}{d\theta} = \cos \theta \] \[ \frac{dv}{d\theta} = -\sin \theta \] Now substituting back: \[ \frac{dy}{d\theta} = \sin \theta (-\sin \theta) + (1 + \cos \theta)(\cos \theta) \] \[ = -\sin^2 \theta + \cos \theta + \cos^2 \theta \] \[ = \cos \theta + 1 - \sin^2 \theta \] ### Step 3: Evaluate at \(\theta = \frac{\pi}{2}\) Now we substitute \(\theta = \frac{\pi}{2}\): For \(\frac{dx}{d\theta}\): \[ \cos\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \sin\left(\frac{\pi}{2}\right) = 1 \] \[ \frac{dx}{d\theta} = -2(0)(1) - 1 = -1 \] For \(\frac{dy}{d\theta}\): \[ \cos\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \sin\left(\frac{\pi}{2}\right) = 1 \] \[ \frac{dy}{d\theta} = 0 + 1 - 1^2 = 0 \] ### Step 4: Calculate \(\frac{dy}{dx}\) Now substituting into the formula: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{0}{-1} = 0 \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(\theta = \frac{\pi}{2}\) is: \[ \frac{dy}{dx} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x=ae^(theta)(sintheta-costheta),y=ae^(theta)(sintheta+costheta)," then "((dy)/(dx))" at "theta=(pi)/(2) is

If x=sintheta+thetacostheta,y=costheta-thetasintheta," then "((dy)/(dx))" at "theta=(pi)/(2) is

If y=a(theta+sintheta),x=a(1-costheta)," then "(dy)/(dx)=

If x+cos^(3)theta=3costheta,y+sin^(3)theta=3sintheta," then "(dy)/(dx)=

If y=1-costheta,x=1-sintheta,then (dy)/(dx) at theta=(pi)/(4) is

x=3costheta-2cos^(3)theta,y=3sintheta-2sin^(3)theta" then find dy/dx at "theta=(pi)/(4)

If x=a(costheta+thetasintheta),y=a(sintheta-thetacostheta)," then "(dy)/(dx)=

If x=2costheta-cos2theta,y=2sintheta-sin2theta,"find "dy/dx" at "theta=pi/2 .

If x+3costheta=2cos^(3)theta,y+2sin^(3)theta=3sintheta," then "(dy)/(dx)=

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If x=costheta(1+costheta),y=sintheta(1+costheta)," then "((dy)/(dx))" ...

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |