Home
Class 12
MATHS
If y=ae^(mx)+be^(-mx)," then "y(2)=...

If `y=ae^(mx)+be^(-mx)," then "y_(2)=`

A

`-m^(2)y`

B

`m^(2)y`

C

`-my`

D

my

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the function \( y = ae^{mx} + be^{-mx} \). ### Step-by-Step Solution: 1. **Identify the function**: \[ y = ae^{mx} + be^{-mx} \] 2. **First Derivative**: We differentiate \( y \) with respect to \( x \). \[ \frac{dy}{dx} = \frac{d}{dx}(ae^{mx}) + \frac{d}{dx}(be^{-mx}) \] Using the chain rule: - The derivative of \( ae^{mx} \) is \( ame^{mx} \) (where \( m \) is a constant). - The derivative of \( be^{-mx} \) is \( -bme^{-mx} \) (again, using the chain rule). Thus, we have: \[ \frac{dy}{dx} = ame^{mx} - bme^{-mx} \] 3. **Second Derivative**: Now, we differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(ame^{mx}) + \frac{d}{dx}(-bme^{-mx}) \] Again, applying the chain rule: - The derivative of \( ame^{mx} \) is \( am^2e^{mx} \). - The derivative of \( -bme^{-mx} \) is \( bm^2e^{-mx} \). Therefore, we have: \[ \frac{d^2y}{dx^2} = am^2e^{mx} + bm^2e^{-mx} \] 4. **Factor out \( m^2 \)**: We can factor out \( m^2 \) from the expression: \[ \frac{d^2y}{dx^2} = m^2(ae^{mx} + be^{-mx}) \] 5. **Final Expression**: Since \( y = ae^{mx} + be^{-mx} \), we can substitute back: \[ \frac{d^2y}{dx^2} = m^2y \] ### Conclusion: Thus, the second derivative \( y_{(2)} \) is given by: \[ y_{(2)} = m^2y \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

If y=ae^(mx)+be^(-mx) then (d^(2)y)/(dx^(2)) is

If y= Ae^(mx) + Be^(-mx) , show that (d^2y)/dx^2-m^2y=0 .

If y=ln(e^(mx)+e^(-mx)) , then what is (dy)/(dx) at x = 0 equal to ?

If u=A e ^(mx) +Be^(nx ) ,then y_2-( m+n) y_1+ mn y=

If y=Ae^(mx)+Be^(nx), show that (d^(2)y)/(dx^(2))-((m+n)dy)/(dx)+mny=0

If y=Ae^(mx)+Be^(nx), show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0

y=ae^(mx)+be^(-mx),(d^(2)y)/(dx^(2))=m^(2) yisequal rarr m^(2)(ae^(mx)-be^(mx))

If y=ln(e^(mx)+e^(-mx)) . Then what is the value of (dy)/(dx) at x=0 ?