Home
Class 12
MATHS
If y=acosmx+bsinmx," then "y(2)=...

If `y=acosmx+bsinmx," then "y_(2)=`

A

`-m^(2)y`

B

`m^(2)y`

C

`-my`

D

my

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \( y_2 \) of the function \( y = a \cos(mx) + b \sin(mx) \), we will follow these steps: ### Step 1: Differentiate \( y \) to find \( y_1 \) Given: \[ y = a \cos(mx) + b \sin(mx) \] We will differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = y_1 = \frac{d}{dx}(a \cos(mx)) + \frac{d}{dx}(b \sin(mx)) \] Using the chain rule: \[ \frac{d}{dx}(\cos(mx)) = -m \sin(mx) \quad \text{and} \quad \frac{d}{dx}(\sin(mx)) = m \cos(mx) \] Thus, we have: \[ y_1 = a(-m \sin(mx)) + b(m \cos(mx)) \] \[ y_1 = -am \sin(mx) + bm \cos(mx) \] ### Step 2: Differentiate \( y_1 \) to find \( y_2 \) Now we differentiate \( y_1 \) to find \( y_2 \): \[ y_2 = \frac{d^2y}{dx^2} = \frac{d}{dx}(-am \sin(mx)) + \frac{d}{dx}(bm \cos(mx)) \] Using the chain rule again: \[ \frac{d}{dx}(-am \sin(mx)) = -am \cdot m \cos(mx) = -am^2 \cos(mx) \] \[ \frac{d}{dx}(bm \cos(mx)) = bm \cdot (-m \sin(mx)) = -bm^2 \sin(mx) \] Thus, we have: \[ y_2 = -am^2 \cos(mx) - bm^2 \sin(mx) \] ### Step 3: Factor out common terms We can factor out \(-m^2\): \[ y_2 = -m^2(a \cos(mx) + b \sin(mx)) \] ### Step 4: Substitute back for \( y \) Since \( y = a \cos(mx) + b \sin(mx) \), we can substitute: \[ y_2 = -m^2 y \] ### Final Result Thus, the second derivative is: \[ y_2 = -m^2 y \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=e^(x)(cosx+sinx)," then "y_(2)-2y_(1)=

If y=e^(x)sinx," then "y_(2)-2y_(1)=

If y=log (1+ sin x), prove that y_(4)+y_(3)y_(1)+y_(2)^(2)=0 .

If x^(2)-y^(2)=a^(2)," then "y^(3)y_(2)=

If (x_(1),y_(1)) & (x_(2),y_(2)) are the extremities of the focal chord of parabola y^(2)=4ax then y_(1)y_(2)=

If x, y satisfy the equation, y^(x)=x^(y) and x=2y , then x^(2)+y^(2)=

If y= sin px and y_(n) is the nth derivative of y, then |{:(y,y_(1),y_(2)),(y_(3),y_(4),y_(5)),(y_(6),y_(7),y_(8)):}| is

y=a cos x+b sin x+x sin x is a solution of the D.E. A) y_(2)+y=x cos x B) y_(2)+2y=2cos x C) y_(2)+y=2cos x D) y_(2)-y=2cos x

If y=(ax+b)/(cx+d), then prove that 2y_(1)y_(3)=3(y_(2))^(2)

If (x)/(y)+(y)/(x)=2," then: "(d^(2)y)/(dx^(2))=