Home
Class 12
MATHS
If x^(2)+y^(2)=1," then "(d^(2)x)/(dy^(2...

If `x^(2)+y^(2)=1," then "(d^(2)x)/(dy^(2))`

A

`-y^(3)`

B

`y^(3)`

C

`x^(3)`

D

`x^(-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \( \frac{d^2x}{dy^2} \) given the equation \( x^2 + y^2 = 1 \), we will follow these steps: ### Step 1: Differentiate the equation with respect to \( y \) Starting with the equation: \[ x^2 + y^2 = 1 \] Differentiate both sides with respect to \( y \): \[ \frac{d}{dy}(x^2) + \frac{d}{dy}(y^2) = \frac{d}{dy}(1) \] Using the chain rule, we have: \[ 2x \frac{dx}{dy} + 2y = 0 \] ### Step 2: Solve for \( \frac{dx}{dy} \) From the equation \( 2x \frac{dx}{dy} + 2y = 0 \), we can simplify: \[ 2x \frac{dx}{dy} = -2y \] \[ x \frac{dx}{dy} = -y \] \[ \frac{dx}{dy} = -\frac{y}{x} \] ### Step 3: Differentiate \( \frac{dx}{dy} \) to find \( \frac{d^2x}{dy^2} \) Now we need to differentiate \( \frac{dx}{dy} = -\frac{y}{x} \) with respect to \( y \): \[ \frac{d^2x}{dy^2} = \frac{d}{dy}\left(-\frac{y}{x}\right) \] Using the quotient rule: \[ \frac{d}{dy}\left(-\frac{y}{x}\right) = -\frac{x \cdot \frac{dy}{dy} - y \cdot \frac{dx}{dy}}{x^2} \] \[ = -\frac{x \cdot 1 - y \cdot \left(-\frac{y}{x}\right)}{x^2} \] \[ = -\frac{x + \frac{y^2}{x}}{x^2} \] \[ = -\frac{x^2 + y^2}{x^3} \] ### Step 4: Substitute \( x^2 + y^2 = 1 \) Since we know from the original equation that \( x^2 + y^2 = 1 \): \[ \frac{d^2x}{dy^2} = -\frac{1}{x^3} \] ### Final Result Thus, the final answer is: \[ \frac{d^2x}{dy^2} = -\frac{1}{x^3} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x^(2) +y^(2) = a then (d^(2)x)/(dy^(2)) = ___________

If y=f(x) then (d^(2)x)/(dy^(2)) is

If : (dx)/(dy)=u" and "(d^(2)x)/(dy^(2))=v," then: "(d^(2)y)/(dx^(2))=

"If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=

If y=sinx+e^(x)," then "(d^(2)x)/(dy^(2)) equals

If y=x^(2)e^(x),"show that "(d^(2)y)/(dx^(2))-(dy)/(dx)-2(x+1)e^(x)=0

If y=x+e^(x), find (d^(2)x)/(dy^(2))

If y=x+e^(x), then (d^(2)x)/(dy^(2)) is equal to

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2) If y=sin(2sin^(-1)x), show that ((1-x^(2))d^(2y))/(dx^(2))=x(dy)/(dx)-4y

If y=e^(2x) , then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to