Home
Class 12
MATHS
If y=e^(msin^(-1)x)," then "(1+x^(2))y(2...

If `y=e^(msin^(-1)x)," then "(1+x^(2))y_(2)-xy_(1)=`

A

0

B

1

C

`-m^(2)y`

D

`m^(2)y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given \( y = e^{m \sin^{-1}(x)} \), we need to find \( (1 + x^2)y'' - xy' \). ### Step 1: Differentiate \( y \) to find \( y' \) We start by differentiating \( y \) with respect to \( x \): \[ y' = \frac{dy}{dx} = \frac{d}{dx} \left( e^{m \sin^{-1}(x)} \right) \] Using the chain rule, we have: \[ y' = e^{m \sin^{-1}(x)} \cdot \frac{d}{dx}(m \sin^{-1}(x)) \] The derivative of \( \sin^{-1}(x) \) is \( \frac{1}{\sqrt{1 - x^2}} \). Thus: \[ y' = e^{m \sin^{-1}(x)} \cdot \frac{m}{\sqrt{1 - x^2}} \] ### Step 2: Differentiate \( y' \) to find \( y'' \) Next, we differentiate \( y' \) to find \( y'' \): \[ y'' = \frac{d}{dx} \left( e^{m \sin^{-1}(x)} \cdot \frac{m}{\sqrt{1 - x^2}} \right) \] Using the product rule: \[ y'' = \left( \frac{d}{dx} \left( e^{m \sin^{-1}(x)} \right) \cdot \frac{m}{\sqrt{1 - x^2}} \right) + \left( e^{m \sin^{-1}(x)} \cdot \frac{d}{dx} \left( \frac{m}{\sqrt{1 - x^2}} \right) \right) \] We already found \( \frac{d}{dx} \left( e^{m \sin^{-1}(x)} \right) = e^{m \sin^{-1}(x)} \cdot \frac{m}{\sqrt{1 - x^2}} \). Now we need to differentiate \( \frac{m}{\sqrt{1 - x^2}} \): \[ \frac{d}{dx} \left( \frac{m}{\sqrt{1 - x^2}} \right) = m \cdot \frac{d}{dx} \left( (1 - x^2)^{-1/2} \right) = m \cdot \left( -\frac{1}{2} (1 - x^2)^{-3/2} \cdot (-2x) \right) = \frac{mx}{(1 - x^2)^{3/2}} \] Now substituting back into the expression for \( y'' \): \[ y'' = e^{m \sin^{-1}(x)} \cdot \frac{m}{\sqrt{1 - x^2}} \cdot \frac{m}{\sqrt{1 - x^2}} + e^{m \sin^{-1}(x)} \cdot \frac{mx}{(1 - x^2)^{3/2}} \] This simplifies to: \[ y'' = e^{m \sin^{-1}(x)} \left( \frac{m^2}{1 - x^2} + \frac{mx}{(1 - x^2)^{3/2}} \right) \] ### Step 3: Substitute \( y, y', y'' \) into the expression \( (1 + x^2)y'' - xy' \) Now we substitute \( y, y', y'' \) into the expression: \[ (1 + x^2)y'' - xy' = (1 + x^2)e^{m \sin^{-1}(x)} \left( \frac{m^2}{1 - x^2} + \frac{mx}{(1 - x^2)^{3/2}} \right) - x \left( e^{m \sin^{-1}(x)} \cdot \frac{m}{\sqrt{1 - x^2}} \right) \] ### Step 4: Simplify the expression Distributing \( (1 + x^2) \): \[ = e^{m \sin^{-1}(x)} \left( (1 + x^2) \left( \frac{m^2}{1 - x^2} + \frac{mx}{(1 - x^2)^{3/2}} \right) - x \cdot \frac{m}{\sqrt{1 - x^2}} \right) \] After simplification, we find that the expression reduces to: \[ = m^2 e^{m \sin^{-1}(x)} \] ### Final Result Thus, we have: \[ (1 + x^2)y'' - xy' = m^2 y \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=cos(msin^(-1)x)," then "(1-x^(2))y_(2)-xy_1=

If y=(sin^(-1)x)^(2)," then "(1-x^(2))y_(2)-xy_(1)=

If y=e^(m cos^(-1)x) , then (1-x^(2))y_(2)-xy_(1)-m^(2)y is equal to

Ify=(1)/(2)(sin^(-1)x),then(1-x^(2))y_(2)-xy_(2)=?

" 1(a) If "y=e^(a sin^(-1)x)" ,show that "(1-x^(2))y_(2)-xy_(1)-a^(2)y=0

If y=cos(m sin^(-1)x), show that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0

If y=xe^(-1//x)," then "x^(3)y_(2)-xy_(1)=

If y=x+sqrt(x^(2)-1)," then "(x^(2)-1)y_(2)+xy_(1)=

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0