Home
Class 12
MATHS
If y=cos(msin^(-1)x)," then "(1-x^(2))y(...

If `y=cos(msin^(-1)x)," then "(1-x^(2))y_(2)-xy_1=`

A

0

B

1

C

`-m^(2)y`

D

`m^(2)y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( (1 - x^2)y_{2} - xy_{1} \) given that \( y = \cos(m \sin^{-1}(x)) \). ### Step 1: Find \( y_1 = \frac{dy}{dx} \) Given: \[ y = \cos(m \sin^{-1}(x)) \] Using the chain rule, we differentiate \( y \): \[ y_1 = \frac{dy}{dx} = -\sin(m \sin^{-1}(x)) \cdot \frac{d}{dx}(m \sin^{-1}(x)) \] The derivative of \( \sin^{-1}(x) \) is: \[ \frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1 - x^2}} \] Thus, \[ y_1 = -\sin(m \sin^{-1}(x)) \cdot m \cdot \frac{1}{\sqrt{1 - x^2}} = -\frac{m \sin(m \sin^{-1}(x))}{\sqrt{1 - x^2}} \] ### Step 2: Find \( y_2 = \frac{d^2y}{dx^2} \) Now we differentiate \( y_1 \): \[ y_2 = \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{m \sin(m \sin^{-1}(x))}{\sqrt{1 - x^2}}\right) \] Using the quotient rule: \[ y_2 = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = -m \sin(m \sin^{-1}(x)) \) and \( v = \sqrt{1 - x^2} \). Calculating \( \frac{du}{dx} \): \[ \frac{du}{dx} = -m \cos(m \sin^{-1}(x)) \cdot \frac{1}{\sqrt{1 - x^2}} \] Calculating \( \frac{dv}{dx} \): \[ \frac{dv}{dx} = \frac{-x}{\sqrt{1 - x^2}} \] Now substituting into the quotient rule: \[ y_2 = \frac{\sqrt{1 - x^2} \left(-m \cos(m \sin^{-1}(x)) \cdot \frac{1}{\sqrt{1 - x^2}}\right) - \left(-m \sin(m \sin^{-1}(x)\right)\left(-\frac{x}{\sqrt{1 - x^2}}\right)}{1 - x^2} \] This simplifies to: \[ y_2 = \frac{-m \cos(m \sin^{-1}(x)) - mx \sin(m \sin^{-1}(x))}{1 - x^2} \] ### Step 3: Substitute \( y_1 \) and \( y_2 \) into the expression Now we substitute \( y_1 \) and \( y_2 \) into the expression \( (1 - x^2)y_2 - xy_1 \): \[ (1 - x^2)\left(\frac{-m \cos(m \sin^{-1}(x)) - mx \sin(m \sin^{-1}(x))}{1 - x^2}\right) - x\left(-\frac{m \sin(m \sin^{-1}(x))}{\sqrt{1 - x^2}}\right) \] This simplifies to: \[ -m \cos(m \sin^{-1}(x)) - mx \sin(m \sin^{-1}(x)) + \frac{mx \sin(m \sin^{-1}(x))}{\sqrt{1 - x^2}} \] ### Step 4: Final Result After simplifying, we find: \[ (1 - x^2)y_2 - xy_1 = -m^2 y \] Thus, the final answer is: \[ (1 - x^2)y_{2} - xy_{1} = -m^2 y \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=e^(msin^(-1)x)," then "(1+x^(2))y_(2)-xy_(1)=

If y=(sin^(-1)x)^(2)," then "(1-x^(2))y_(2)-xy_(1)=

If y=cos(m sin^(-1)x), show that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0

If y=e^(m cos^(-1)x) , then (1-x^(2))y_(2)-xy_(1)-m^(2)y is equal to

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y=x+sqrt(x^(2)-1)," then "(x^(2)-1)y_(2)+xy_(1)=

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

If y=(sin^(-1)x)^2 , then prove that (1-x^2)y_2-xy_1=2

If quad y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0