Home
Class 12
MATHS
If y=x+sqrt(x^(2)-1)," then "(x^(2)-1)y(...

If `y=x+sqrt(x^(2)-1)," then "(x^(2)-1)y_(2)+xy_(1)=`

A

0

B

1

C

y

D

`-y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( (x^2 - 1)y_2 + xy_1 \), where \( y = x + \sqrt{x^2 - 1} \), \( y_1 = \frac{dy}{dx} \), and \( y_2 = \frac{d^2y}{dx^2} \). ### Step 1: Find \( y_1 = \frac{dy}{dx} \) Given: \[ y = x + \sqrt{x^2 - 1} \] To differentiate \( y \) with respect to \( x \): \[ y_1 = \frac{dy}{dx} = 1 + \frac{1}{2\sqrt{x^2 - 1}} \cdot (2x) = 1 + \frac{x}{\sqrt{x^2 - 1}} \] ### Step 2: Find \( y_2 = \frac{d^2y}{dx^2} \) Now, we differentiate \( y_1 \): \[ y_2 = \frac{d^2y}{dx^2} = \frac{d}{dx}\left(1 + \frac{x}{\sqrt{x^2 - 1}}\right) \] Using the quotient rule for \( \frac{x}{\sqrt{x^2 - 1}} \): Let \( u = x \) and \( v = \sqrt{x^2 - 1} \). Then, \[ y_2 = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( \frac{du}{dx} = 1 \) and \( \frac{dv}{dx} = \frac{x}{\sqrt{x^2 - 1}} \). Calculating \( \frac{dv}{dx} \): \[ \frac{dv}{dx} = \frac{x}{\sqrt{x^2 - 1}} \] Now substituting: \[ y_2 = \frac{\sqrt{x^2 - 1} \cdot 1 - x \cdot \frac{x}{\sqrt{x^2 - 1}}}{x^2 - 1} \] \[ = \frac{\sqrt{x^2 - 1} - \frac{x^2}{\sqrt{x^2 - 1}}}{x^2 - 1} \] \[ = \frac{(x^2 - 1) - x^2}{(x^2 - 1)\sqrt{x^2 - 1}} = \frac{-1}{(x^2 - 1)\sqrt{x^2 - 1}} \] ### Step 3: Substitute \( y_1 \) and \( y_2 \) into the expression Now we substitute \( y_1 \) and \( y_2 \) into the expression \( (x^2 - 1)y_2 + xy_1 \): \[ (x^2 - 1)y_2 + xy_1 = (x^2 - 1)\left(-\frac{1}{(x^2 - 1)\sqrt{x^2 - 1}}\right) + x\left(1 + \frac{x}{\sqrt{x^2 - 1}}\right) \] \[ = -\frac{1}{\sqrt{x^2 - 1}} + x + \frac{x^2}{\sqrt{x^2 - 1}} \] \[ = x - \frac{1}{\sqrt{x^2 - 1}} + \frac{x^2}{\sqrt{x^2 - 1}} \] \[ = x + \frac{x^2 - 1}{\sqrt{x^2 - 1}} \] ### Final Expression Thus, the final expression is: \[ = x + \frac{x^2 - 1}{\sqrt{x^2 - 1}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=(sin^(-1)x)^(2)," then "(1-x^(2))y_(2)-xy_(1)=

"If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y_(2)+xy_(1) is (where y_(r) represents the rth derivative of y w.r.t. x)

If y=xe^(-1//x)," then "x^(3)y_(2)-xy_(1)=

If y=e^(msin^(-1)x)," then "(1+x^(2))y_(2)-xy_(1)=

If y=(sinh^(-1)x)/(sqrt(1+x^(2))) then (1+x^(2))y_(2)+3xy_(1)=

If y^(1/m)= x + sqrt (1 + x^(2)) "then" (1 + x^(2))y_(2)+ xy _(1) = ?

If y=e^(sqrt(x))(sqrt(x)-1)," then "4xy_(2)-2y_(1)=

If y=e^(m cos^(-1)x) , then (1-x^(2))y_(2)-xy_(1)-m^(2)y is equal to

If y={x+sqrt(x^(2)+1)}^(m), show that (x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

If y=e^(sqrt(x))+e^(-sqrt(x))," then "4xy_(2)+2y_(1)=