Home
Class 12
MATHS
If y=(sin^(-1)x)^(2)," then "(1-x^(2))y(...

If `y=(sin^(-1)x)^(2)," then "(1-x^(2))y_(2)-xy_(1)=`

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( (1 - x^2)y'' - xy' \) given that \( y = (\sin^{-1} x)^2 \). ### Step 1: Differentiate \( y \) to find \( y' \) Given: \[ y = (\sin^{-1} x)^2 \] Using the chain rule: \[ y' = 2(\sin^{-1} x) \cdot \frac{d}{dx}(\sin^{-1} x) \] We know that: \[ \frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}} \] Thus, \[ y' = 2(\sin^{-1} x) \cdot \frac{1}{\sqrt{1 - x^2}} = \frac{2 \sin^{-1} x}{\sqrt{1 - x^2}} \] ### Step 2: Differentiate \( y' \) to find \( y'' \) Now we differentiate \( y' \): \[ y' = \frac{2 \sin^{-1} x}{\sqrt{1 - x^2}} \] Using the quotient rule: \[ y'' = \frac{(v \cdot u' - u \cdot v')}{v^2} \] where \( u = 2 \sin^{-1} x \) and \( v = \sqrt{1 - x^2} \). First, we find \( u' \) and \( v' \): - \( u' = 2 \cdot \frac{1}{\sqrt{1 - x^2}} \) - \( v = (1 - x^2)^{1/2} \) so \( v' = \frac{-x}{\sqrt{1 - x^2}} \) Now substituting into the quotient rule: \[ y'' = \frac{\sqrt{1 - x^2} \cdot 2 \cdot \frac{1}{\sqrt{1 - x^2}} - 2 \sin^{-1} x \cdot \frac{-x}{\sqrt{1 - x^2}}}{1 - x^2} \] This simplifies to: \[ y'' = \frac{2 - 2x \sin^{-1} x}{(1 - x^2)^{3/2}} \] ### Step 3: Substitute \( y' \) and \( y'' \) into the expression \( (1 - x^2)y'' - xy' \) Now we substitute \( y' \) and \( y'' \) into the expression: \[ (1 - x^2)y'' - xy' = (1 - x^2) \cdot \frac{2 - 2x \sin^{-1} x}{(1 - x^2)^{3/2}} - x \cdot \frac{2 \sin^{-1} x}{\sqrt{1 - x^2}} \] This simplifies to: \[ = \frac{(1 - x^2)(2 - 2x \sin^{-1} x)}{(1 - x^2)^{3/2}} - \frac{2x \sin^{-1} x}{\sqrt{1 - x^2}} \] ### Step 4: Combine the terms The first term simplifies to: \[ \frac{2 - 2x \sin^{-1} x}{\sqrt{1 - x^2}} - \frac{2x \sin^{-1} x}{\sqrt{1 - x^2}} = \frac{2 - 4x \sin^{-1} x}{\sqrt{1 - x^2}} \] ### Final Result Thus, the expression simplifies to: \[ (1 - x^2)y'' - xy' = 2 \] ### Conclusion The final answer is: \[ (1 - x^2)y'' - xy' = 2 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=e^(msin^(-1)x)," then "(1+x^(2))y_(2)-xy_(1)=

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y=sin(m sin^(-1)x), then (1-x^(2))y_(2)-xy_(1) is equal to m^(2)y(b)my(c)-m^(2)y(d) none of these

If quad y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y=e^(m cos^(-1)x) , then (1-x^(2))y_(2)-xy_(1)-m^(2)y is equal to

Ify=(1)/(2)(sin^(-1)x),then(1-x^(2))y_(2)-xy_(2)=?

If y=(sin^(-1)x)^2 , then prove that (1-x^2)y_2-xy_1=2

If y=(sin^(-1)x)^(2), then (1-x^(2))y_(2) is equal to xy_(1)+2(b)xy_(1)-2(c)xy_(1)+2(d) none of these

If y=cos(m sin^(-1)x), show that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0