Home
Class 12
MATHS
If y=ax^(5)+(b)/(x^(4))," then "(d^(2)y)...

If `y=ax^(5)+(b)/(x^(4))," then "(d^(2)y)/(dx^(2))=`

A

`-20x^(2)y`

B

`20x^(2)y`

C

`(20y)/(x^(2))`

D

20xy

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative of the function \( y = ax^5 + \frac{b}{x^4} \), we will follow these steps: ### Step 1: Rewrite the function We can rewrite the term \( \frac{b}{x^4} \) as \( b \cdot x^{-4} \). Thus, the function becomes: \[ y = ax^5 + b x^{-4} \] ### Step 2: First Derivative Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(ax^5) + \frac{d}{dx}(b x^{-4}) \] Using the power rule, we get: \[ \frac{dy}{dx} = 5ax^4 - 4b x^{-5} \] ### Step 3: Second Derivative Next, we differentiate \( \frac{dy}{dx} \) to find the second derivative: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(5ax^4) + \frac{d}{dx}(-4b x^{-5}) \] Applying the power rule again: \[ \frac{d^2y}{dx^2} = 20ax^3 + 20b x^{-6} \] ### Step 4: Final Expression We can factor out the common terms: \[ \frac{d^2y}{dx^2} = 20a x^3 + 20b x^{-6} \] ### Step 5: Express in terms of \( y \) We know from the original function that: \[ y = ax^5 + b x^{-4} \] To express \( \frac{d^2y}{dx^2} \) in terms of \( y \), we can rewrite \( ax^5 \) and \( b x^{-4} \): \[ \frac{d^2y}{dx^2} = 20 \left( ax^5 + b x^{-4} \right) \cdot \frac{1}{x^2} \] Thus, we have: \[ \frac{d^2y}{dx^2} = 20 \cdot \frac{y}{x^2} \] ### Final Answer The second derivative of \( y \) is: \[ \frac{d^2y}{dx^2} = \frac{20y}{x^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=ax^(n+1)+bx^(-n), then x^(2)(d^(2)y)/(dx^(2))=n(n-1)y(b)n(n+1)y(c)ny(d)n^(2)y

If x^(2)y^(3)=(x+y)^(5), then (d^(2)y)/(dx^(2)) is

If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))

If y=ax^(n+1)+bx^(-n), then x^(2)(d^(2)y)/(dx^(2)) is equal to n(n-1)y(b)n(n+1)yny(d)n^(2)y

If y=x log((x)/(a+bx)), thenx ^(3)(d^(2)y)/(dx^(2))= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^(2)y(dy)/(dx)-x(d)(y(dy)/(dx)-x)^(2)

If (x)/(y)+(y)/(x)=2," then: "(d^(2)y)/(dx^(2))=

If x^(2) y^(5) = (x + y)^(7) , " then " (d^(2)y)/(dx^(2)) is equal to

If y^(2)=ax^(2)+bx+c, then y^(3)(d^(2)y)/(dx^(2)) is a constant (b) a function of x only (c) a function of y only (d) a function of x and y

If y^(2)=ax^(2)+bx+c, then y^(3)(d^(2)y)/(dx^(2)) is (a)a constant ( b) a function of x only (c)a function of y only (d)a function of xandy

if y^(2)=ax^(2)+2bx+c then y^(3)(d^(2)y)/(dx^(2))