Home
Class 12
MATHS
If y=sqrt(ax)+(a^(2))/(x)," then "y(2)" ...

If `y=sqrt(ax)+(a^(2))/(x)," then "y_(2)" at "x=a` is

A

`(4a)/(7)`

B

`(7)/(4a)`

C

`-(7)/(4a)`

D

`-(4a)/(7)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If sqrt(x)+sqrt(y)=sqrt(a)," then "y_(2)" at "x=a is

If y=sqrt(x^(2)+ax+1), then (dy)/(dx)

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If (sqrt(3))^(x+y)=9 and (sqrt(2))^(x-y)=32 , then 2x+y is _______.

If y=log(sqrt(x)+(1)/(sqrt(x)))^(2), then , x(x+1)^(2)y_(2)+(x+1)^(2)y_(1) is

The equation of tangent to the curve y=int_(x^(2))^(x^(3))(dt)/(sqrt(1+t^(2))) at x=1 is sqrt(3)x+1=y (b) sqrt(2)y+1=x sqrt(3)x+y=1(d)sqrt(2)y=x