Home
Class 12
MATHS
If y=ae^(x)+be^(-x)+c," then "y'''=...

If `y=ae^(x)+be^(-x)+c," then "y'''=`

A

y

B

0

C

y'

D

y''

Text Solution

AI Generated Solution

The correct Answer is:
To find the third derivative of the function \( y = ae^x + be^{-x} + c \), we will go through the differentiation step by step. ### Step 1: Find the first derivative \( y' \) Given: \[ y = ae^x + be^{-x} + c \] To find the first derivative \( y' \), we differentiate \( y \) with respect to \( x \): \[ y' = \frac{d}{dx}(ae^x) + \frac{d}{dx}(be^{-x}) + \frac{d}{dx}(c) \] Using the derivatives of \( e^x \) and \( e^{-x} \): \[ y' = a e^x + b \left(-e^{-x}\right) + 0 \] Thus, we have: \[ y' = a e^x - b e^{-x} \] ### Step 2: Find the second derivative \( y'' \) Now we differentiate \( y' \) to find the second derivative \( y'' \): \[ y'' = \frac{d}{dx}(a e^x - b e^{-x}) \] Differentiating each term: \[ y'' = a e^x + b e^{-x} \] ### Step 3: Find the third derivative \( y''' \) Now we differentiate \( y'' \) to find the third derivative \( y''' \): \[ y''' = \frac{d}{dx}(a e^x + b e^{-x}) \] Differentiating each term: \[ y''' = a e^x - b e^{-x} \] ### Conclusion Notice that \( y''' = y' \). Therefore, we conclude that: \[ y''' = a e^x - b e^{-x} \] ### Final Answer \[ y''' = y' \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=ae^(mx)+be^(-mx)," then "y_(2)=

If y = ae^(5x)+be^(-5x) , then the differential equation is ……..

if y=ae^(x)+be^(-3x)+c , then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx)) is

If y = Ae^(5x) + Be^(-5x) , then (d^2y)/(dx^2) is equal to : (a) 25y (b) 5y (c) -25y (d) 15y

If y=ae^(5x)+be^(-5x), then find differential equation

If y=ae^(2x)+be^(-2x) then which of the following is true ?

(1) y = ae^(4x) -be^(-3x) +c (2) xy = ae^(5x) +be^(-5x)

If y=ae^(2x)+be^(-x), show that (d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0

(c) If y=(x)/(x+y) , then (dy)/(dx) =:

Which of the following differential equation has y=ae^(-x)+be^(x) as the General solution