Home
Class 12
MATHS
If 2x^(2)y^(2)-3xy+1=0," then "((dy)/(dx...

If `2x^(2)y^(2)-3xy+1=0," then "((dy)/(dx))" at "(1,1)` is

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at the point \((1, 1)\) for the equation \(2x^2y^2 - 3xy + 1 = 0\), we will use implicit differentiation. Here are the steps: ### Step 1: Differentiate the equation implicitly We start with the equation: \[ 2x^2y^2 - 3xy + 1 = 0 \] Now, we differentiate both sides with respect to \(x\). Using the product rule for \(2x^2y^2\) and \(-3xy\): \[ \frac{d}{dx}(2x^2y^2) = 2 \cdot (x^2 \cdot \frac{d}{dx}(y^2) + y^2 \cdot \frac{d}{dx}(x^2)) = 2(2xy^2\frac{dy}{dx} + 2x^2y) \] \[ \frac{d}{dx}(-3xy) = -3 \left( x\frac{dy}{dx} + y \right) \] The derivative of the constant \(1\) is \(0\). Putting it all together, we have: \[ 2(2xy^2\frac{dy}{dx} + 2x^2y) - 3\left(x\frac{dy}{dx} + y\right) = 0 \] ### Step 2: Simplify the expression Expanding and simplifying gives: \[ 4xy^2\frac{dy}{dx} + 4x^2y - 3x\frac{dy}{dx} - 3y = 0 \] ### Step 3: Collect terms involving \(\frac{dy}{dx}\) Rearranging the equation to isolate \(\frac{dy}{dx}\): \[ (4xy^2 - 3x)\frac{dy}{dx} + (4x^2y - 3y) = 0 \] \[ (4xy^2 - 3x)\frac{dy}{dx} = - (4x^2y - 3y) \] ### Step 4: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{-(4x^2y - 3y)}{(4xy^2 - 3x)} \] ### Step 5: Substitute the point \((1, 1)\) Now we substitute \(x = 1\) and \(y = 1\): \[ \frac{dy}{dx} = \frac{-(4(1)^2(1) - 3(1))}{(4(1)(1)^2 - 3(1))} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-(4 - 3)}{(4 - 3)} = \frac{-1}{1} = -1 \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at the point \((1, 1)\) is: \[ \frac{dy}{dx} = -1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If 2x^(2)+3y+5y^(2)+x+9=0," then "((dy)/(dx))at(-1,-1) is

" If "3x^(2)+2xy+6y^(2)=6" then "(dy)/(dx)" at "(1,1)" is "

If 2x^(2)-3xy+y^(2)+x+2y-8=0 then (dy)/(dx) =

if 2x^(2)-3xy+y^(2)+x+2y-8=0 then (dy)/(dx)

If xy^(4)=2x^(2)y^(3)-y^(1//3)-5" at "((dy)/(dx))" at "(2,1) is

If xy=1," then: "y^(2)+(dy)/(dx)=

If xy-sqrt((1-x^(2)(1-y^(2))))=0," then "(dy)/(dx)=

If x^(2)+xy+y^(2)=(7)/(4), then (dy)/(dx) at x=1 and y=(1)/(2) is:

1:Ify=x^(3)+3xy^(2)+3x^(2)y, find (dy)/(dx)

If x^(3)-y^(3)+3xy^(2)-3x^(2)y+1=0, then at (0,1)(dy)/(dx) equals-

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If 2x^(2)y^(2)-3xy+1=0," then "((dy)/(dx))" at "(1,1) is

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |