Home
Class 12
MATHS
If xy^(4)=2x^(2)y^(3)-y^(1//3)-5" at "((...

If `xy^(4)=2x^(2)y^(3)-y^(1//3)-5" at "((dy)/(dx))" at "(2,1)` is

A

`(21)/(47)`

B

`-(21)/(47)`

C

`-(47)/(21)`

D

`(47)/(21)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at the point \((2, 1)\) for the equation \(xy^4 = 2x^2y^3 - y^{1/3} - 5\), we will use implicit differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate both sides with respect to \(x\) Starting with the equation: \[ xy^4 = 2x^2y^3 - y^{1/3} - 5 \] We differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(xy^4) = \frac{d}{dx}(2x^2y^3) - \frac{d}{dx}(y^{1/3}) - \frac{d}{dx}(5) \] ### Step 2: Apply the product rule on the left side Using the product rule on the left side: \[ \frac{d}{dx}(xy^4) = x \frac{d}{dx}(y^4) + y^4 \frac{d}{dx}(x) \] \[ = x(4y^3 \frac{dy}{dx}) + y^4(1) = 4xy^3 \frac{dy}{dx} + y^4 \] ### Step 3: Differentiate the right side Now, differentiate the right side: \[ \frac{d}{dx}(2x^2y^3) = 2x^2 \frac{d}{dx}(y^3) + y^3 \frac{d}{dx}(2x^2) \] \[ = 2x^2(3y^2 \frac{dy}{dx}) + y^3(4x) = 6x^2y^2 \frac{dy}{dx} + 4xy^3 \] For the term \(-y^{1/3}\): \[ \frac{d}{dx}(-y^{1/3}) = -\frac{1}{3}y^{-2/3} \frac{dy}{dx} \] And the derivative of \(-5\) is \(0\). ### Step 4: Combine the derivatives Putting it all together, we have: \[ 4xy^3 \frac{dy}{dx} + y^4 = 6x^2y^2 \frac{dy}{dx} + 4xy^3 - \frac{1}{3}y^{-2/3} \frac{dy}{dx} \] ### Step 5: Collect terms involving \(\frac{dy}{dx}\) Rearranging gives: \[ 4xy^3 \frac{dy}{dx} - 6x^2y^2 \frac{dy}{dx} + \frac{1}{3}y^{-2/3} \frac{dy}{dx} = 4xy^3 - y^4 \] Factoring out \(\frac{dy}{dx}\): \[ \left(4xy^3 - 6x^2y^2 + \frac{1}{3}y^{-2/3}\right) \frac{dy}{dx} = 4xy^3 - y^4 \] ### Step 6: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{4xy^3 - y^4}{4xy^3 - 6x^2y^2 + \frac{1}{3}y^{-2/3}} \] ### Step 7: Substitute the point \((2, 1)\) Now we substitute \(x = 2\) and \(y = 1\): \[ \frac{dy}{dx} = \frac{4(2)(1)^3 - (1)^4}{4(2)(1)^3 - 6(2^2)(1^2) + \frac{1}{3}(1)^{-2/3}} \] \[ = \frac{8 - 1}{8 - 24 + \frac{1}{3}} \] \[ = \frac{7}{8 - 24 + \frac{1}{3}} = \frac{7}{-16 + \frac{1}{3}} = \frac{7}{-\frac{48}{3} + \frac{1}{3}} = \frac{7}{-\frac{47}{3}} = \frac{7 \cdot 3}{-47} = \frac{21}{-47} \] Thus, we have: \[ \frac{dy}{dx} = -\frac{21}{47} \] ### Final Answer \[ \frac{dy}{dx} \text{ at } (2, 1) = -\frac{21}{47} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

if xy^(4)=2x^(2)y^(3)-y^((1)/(3))-5 at (dy)/(dx) at (1,-1)

If 2x^(2)y^(2)-3xy+1=0," then "((dy)/(dx))" at "(1,1) is

x^(3)+3x^(2)y+xy^(2)-5y^(3)=0 then ((d^(2)y)/(dx^(2)))_(1,1) is

If x^(4)+7x^(2)y^(2)+9y^(4)=24xy^(3) then (dy)/(dx)=

" If "3x^(2)+2xy+6y^(2)=6" then "(dy)/(dx)" at "(1,1)" is "

If 2x^(2)+3y+5y^(2)+x+9=0," then "((dy)/(dx))at(-1,-1) is

If y^(5)+xy^(2)+x^(3)=4x+3, then find (dy)/(dx) at (2 1)

If 3y+sin(xy)=4" then "((dy)/(dx))" at "((pi)/(2),1)

If y^(3)-3xy^(2)=x^(3)+3x^(2)y, find (dy)/(dx)

If x^(2)+2xy+y^(3)=4, find (dy)/(dx)

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If xy^(4)=2x^(2)y^(3)-y^(1//3)-5" at "((dy)/(dx))" at "(2,1) is

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |