Home
Class 12
MATHS
If y=x^(2)+x^(-2)," then "x^(2)y(2)+4xy(...

If `y=x^(2)+x^(-2)," then "x^(2)y_(2)+4xy_(1)+2y=`

A

0

B

`12x^(2)`

C

12x

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( x^2 y'' + 4x y' + 2y \) given that \( y = x^2 + x^{-2} \). ### Step-by-Step Solution: 1. **Find \( y' \)** (First Derivative): \[ y = x^2 + x^{-2} \] Differentiate \( y \) with respect to \( x \): \[ y' = \frac{d}{dx}(x^2) + \frac{d}{dx}(x^{-2}) = 2x - 2x^{-3} \] 2. **Find \( y'' \)** (Second Derivative): Differentiate \( y' \) with respect to \( x \): \[ y' = 2x - 2x^{-3} \] Now differentiate: \[ y'' = \frac{d}{dx}(2x) + \frac{d}{dx}(-2x^{-3}) = 2 + 6x^{-4} \] 3. **Substitute \( y, y', \) and \( y'' \) into the expression \( x^2 y'' + 4x y' + 2y \)**: \[ x^2 y'' = x^2 (2 + 6x^{-4}) = 2x^2 + 6x^{-2} \] \[ 4x y' = 4x (2x - 2x^{-3}) = 8x^2 - 8x^{-2} \] \[ 2y = 2(x^2 + x^{-2}) = 2x^2 + 2x^{-2} \] 4. **Combine all the terms**: \[ x^2 y'' + 4x y' + 2y = (2x^2 + 6x^{-2}) + (8x^2 - 8x^{-2}) + (2x^2 + 2x^{-2}) \] Combine like terms: \[ = (2x^2 + 8x^2 + 2x^2) + (6x^{-2} - 8x^{-2} + 2x^{-2}) \] \[ = 12x^2 + 0 \] 5. **Final Result**: \[ x^2 y'' + 4x y' + 2y = 12x^2 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=e^(sqrt(x))(sqrt(x)-1)," then "4xy_(2)-2y_(1)=

If x^(2)+xy-y^(2)=1," then "(x-2y)^(3)(d^(2)y)/(dx^(2))=

x-x^(2)y+xy^(2)-y

If y=(log)_(e)((x)/(a+bx))^(x), then x^(3)y_(2)=(xy_(1)-y)^(2)(b)(1+y)^(2)(c)((y-xy_(1))/(y_(1)))^(2) (d) none of these

If y^((1)/(n))+y^(-(1)/(n))=2x then (x^(2)-1)y_(2)+xy_(1) is equal to

If x^(2) - xy + y^(2) =2 and x^(4) + x^(2)y^(2) + y^(4) = 6 , then the value of (x^(2) + xy + y^(2) is :

Find (x+y)^(2) - (x-y)^(2) ? A. 2x^(2)y^(2) B. 4xy C. 2x^(2)+2y^(2) D. x^(2)-y^(2)+2xy