Home
Class 12
MATHS
If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(...

If `y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=`

A

`(-1)/(sqrt(1-x^(2)))`

B

`(1)/(sqrt(1-x^(2)))`

C

`(-x)/(sqrt(1-x^(2)))`

D

`(x)/(sqrt(1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function given by: \[ y = \tan^{-1}\left(\frac{x - \sqrt{1 - x^2}}{x + \sqrt{1 - x^2}}\right) \] ### Step 1: Substitute \( x = \cos \theta \) We start by substituting \( x = \cos \theta \). This gives us: \[ y = \tan^{-1}\left(\frac{\cos \theta - \sqrt{1 - \cos^2 \theta}}{\cos \theta + \sqrt{1 - \cos^2 \theta}}\right) \] Since \( \sqrt{1 - \cos^2 \theta} = \sin \theta \), we can simplify the expression: \[ y = \tan^{-1}\left(\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\right) \] ### Step 2: Simplify the expression Now, we can rewrite the expression for \( y \): \[ y = \tan^{-1}\left(\frac{1 - \tan \theta}{1 + \tan \theta}\right) \] This can be recognized as the tangent subtraction formula: \[ y = \tan^{-1}\left(\tan\left(\frac{\pi}{4} - \theta\right)\right) \] ### Step 3: Use the inverse tangent property Using the property of the inverse tangent function, we have: \[ y = \frac{\pi}{4} - \theta \] ### Step 4: Relate \( \theta \) back to \( x \) Since we set \( x = \cos \theta \), we can express \( \theta \) in terms of \( x \): \[ \theta = \cos^{-1}(x) \] Thus, we can write: \[ y = \frac{\pi}{4} - \cos^{-1}(x) \] ### Step 5: Differentiate with respect to \( x \) Now we differentiate both sides with respect to \( x \): \[ \frac{dy}{dx} = 0 - \frac{d}{dx}(\cos^{-1}(x)) \] Using the derivative of \( \cos^{-1}(x) \): \[ \frac{d}{dx}(\cos^{-1}(x)) = -\frac{1}{\sqrt{1 - x^2}} \] So we have: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

If y=tan^(-1)sqrt(x^(2)+1)+cot^(-1)sqrt(x^(2)+1)" then "(dy)/(dx)=

If y=(1)/(sqrt(x^(2)-x+1)) , then (dy)/(dx)=

If y=tan^(-1) sqrt(x^(2)+y^(2))+cot^(-1) sqrt(x^(2)+y^(2)),"then " dy/dx=

If e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))," then "(dy)/(dx)=

y=(tan^(-1)(sqrt(1+x^(2))+sqrt(1-x^(2))))/(sqrt(1+x^(2))-sqrt(1-x^(2))) then (dy)/(dx)

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

If y=tan^(-1) sqrt((1+cos ((x)/(2)))/(1-cos ((x)/(2))),"then " dy/dx=

If y=tan^(-1)((x)/(sqrt(1+x^(2))-1)), then (dy)/(dx)=

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |