Home
Class 12
MATHS
If y=log((1-x^(2))/(1+x^(2)))," then "(d...

If `y=log((1-x^(2))/(1+x^(2)))," then "(dy)/(dx)=`

A

`(4x^(3))/(1-x^(4))`

B

`(-4x)/(1-x^(4))`

C

`(1)/(4-x^(4))`

D

`(-4x^(3))/(1-x^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log\left(\frac{1 - x^2}{1 + x^2}\right) \), we will use the chain rule and the quotient rule. Let's go through the solution step by step. ### Step-by-Step Solution 1. **Identify the function**: \[ y = \log\left(\frac{1 - x^2}{1 + x^2}\right) \] 2. **Apply the chain rule**: Using the derivative of the logarithm, we have: \[ \frac{dy}{dx} = \frac{1}{\frac{1 - x^2}{1 + x^2}} \cdot \frac{d}{dx}\left(\frac{1 - x^2}{1 + x^2}\right) \] 3. **Simplify the logarithmic derivative**: The expression simplifies to: \[ \frac{dy}{dx} = \frac{1 + x^2}{1 - x^2} \cdot \frac{d}{dx}\left(\frac{1 - x^2}{1 + x^2}\right) \] 4. **Use the quotient rule**: Let \( u = 1 - x^2 \) and \( v = 1 + x^2 \). Then, using the quotient rule: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( \frac{du}{dx} = -2x \) and \( \frac{dv}{dx} = 2x \). 5. **Substituting into the quotient rule**: \[ \frac{d}{dx}\left(\frac{1 - x^2}{1 + x^2}\right) = \frac{(1 + x^2)(-2x) - (1 - x^2)(2x)}{(1 + x^2)^2} \] 6. **Simplifying the numerator**: Expanding the numerator: \[ = \frac{-2x(1 + x^2) - 2x(1 - x^2)}{(1 + x^2)^2} \] \[ = \frac{-2x - 2x^3 - 2x + 2x^3}{(1 + x^2)^2} \] \[ = \frac{-4x}{(1 + x^2)^2} \] 7. **Combine the results**: Now substituting back into the derivative: \[ \frac{dy}{dx} = \frac{1 + x^2}{1 - x^2} \cdot \frac{-4x}{(1 + x^2)^2} \] \[ = \frac{-4x(1 + x^2)}{(1 - x^2)(1 + x^2)^2} \] 8. **Final simplification**: The \( (1 + x^2) \) cancels one power in the denominator: \[ = \frac{-4x}{(1 - x^2)(1 + x^2)} \] Thus, the derivative is: \[ \frac{dy}{dx} = \frac{-4x}{(1 - x^2)(1 + x^2)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=cos ^(-1) ((log x^(2))/( 1+(log x)^(2))) ,then (dy)/(dx)=

y=log ((1-sin x )/(1+sin x )),then (dy)/(dx) =

y=log(x/(1+bx)) then (dy)/(dx)

If y=log(x+sqrt(x^(2)-1)), then (dy)/(dx)=

If y=log[(x-1)^(1//2)-(x+1)^(1//2)]," then: "(dy)/(dx)=

If log(xy)x^(2)+y^(2)," then: "((dy)/(dx))((dx)/(dy))=

If y=log sqrt((1+sin^(2)x)/(1-sin^(2)x)), then find (dy)/(dx)

If y=log((1)/(x)) then value of (dy)/(dx) at x=2 is

If y = log ((sqrt(1 + x^(2)) + x)/(sqrt(1 + x^(2)) -x)) " then " (dy)/(dx) = ?

If y=log(x+(1)/(x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))