Home
Class 12
MATHS
If y=log(sinx)," then "(d^(2)y)/(dx^(2))...

If `y=log(sinx)," then "(d^(2)y)/(dx^(2))` equals

A

`secxtanx`

B

`-cscxcotx`

C

`sec^(2)x`

D

`-csc^(2)x`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=log(sin x), find (d^(2)y)/(dx^(2))

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y=x^(n)log nx.,then (d^(2)y)/(dx^(2))=

If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

If y=log(1+sinx)," then "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=

If y=x log x ,then (d^(2)y)/(dx^(2))=

If y=sinx+cosx" then "(d^(2)y)/(dx^(2)) is :-

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

If y=|(log)_(e)x|, find (d^(2)y)/(dx^(2))

If y=log (log x) then (d^2y)/(dx^2) is equal to