Home
Class 12
MATHS
Derivative of tan^(-1)((sqrt(1+x^(2))-1)...

Derivative of `tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x` is

A

`1`

B

`2`

C

`(1)/(2)`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( f(x) = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \) with respect to \( g(x) = \tan^{-1}(x) \), we will use the chain rule. The steps are as follows: ### Step 1: Define the functions Let: - \( f(x) = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \) - \( g(x) = \tan^{-1}(x) \) ### Step 2: Differentiate \( g(x) \) The derivative of \( g(x) \) is: \[ g'(x) = \frac{1}{1+x^2} \] ### Step 3: Simplify \( f(x) \) To differentiate \( f(x) \), we first simplify \( f(x) \): \[ f(x) = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \] Substituting \( x = \tan(\theta) \), we have: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta) \] Thus, \[ f(x) = \tan^{-1}\left(\frac{\sec(\theta)-1}{\tan(\theta)}\right) \] ### Step 4: Rewrite in terms of sine and cosine Using the identity \( \sec(\theta) = \frac{1}{\cos(\theta)} \) and \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \), we can express: \[ f(x) = \tan^{-1}\left(\frac{\frac{1}{\cos(\theta)}-1}{\frac{\sin(\theta)}{\cos(\theta)}}\right) = \tan^{-1}\left(\frac{1 - \cos(\theta)}{\sin(\theta)}\right) \] ### Step 5: Apply half-angle identities Using the half-angle identities: \[ 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \] We can rewrite: \[ f(x) = \tan^{-1}\left(\frac{2\sin^2\left(\frac{\theta}{2}\right)}{\sin(\theta)}\right) \] Since \( \sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) \): \[ f(x) = \tan^{-1}\left(\frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}\right) = \tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) = \frac{\theta}{2} \] ### Step 6: Substitute back for \( x \) Since \( \theta = \tan^{-1}(x) \): \[ f(x) = \frac{1}{2} \tan^{-1}(x) \] ### Step 7: Differentiate \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = \frac{1}{2} g'(x) = \frac{1}{2} \cdot \frac{1}{1+x^2} \] ### Step 8: Find the derivative \( \frac{f'(x)}{g'(x)} \) Now we find: \[ \frac{f'(x)}{g'(x)} = \frac{\frac{1}{2(1+x^2)}}{\frac{1}{1+x^2}} = \frac{1}{2} \] ### Final Answer Thus, the derivative of \( f(x) \) with respect to \( g(x) \) is: \[ \frac{f'(x)}{g'(x)} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) writ.tan^(-1)x is

Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((2x sqrt(1-x^(2)))/( 1-2x ^(2))) is

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. sin^(-1)((2x)/(1+x^(2))) is

Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.cos ^(-1) sqrt((1+sqrt( 1+x^(2)))/( 2sqrt(1+x^(2)))) is

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

Prove that derivative of tan^(-1)((x)/(1+sqrt(1-x^(2))))" w.r.t. "sin^(-1)x is independent of x.

Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x , when x ne 0 .

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x))w*r.t tan^(-1)x, wherex !=0

Differentiate tan^(-1)((sqrt(1+x^(2))+1)/(x))" w.r.t. "tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2))) at x = 0.

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x is

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |