Home
Class 12
MATHS
If y=log(1+sinx)," then "(d^(3)y)/(dx^(3...

If `y=log(1+sinx)," then "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=`

A

0

B

`cotx`

C

`(-cscxcotx)/((1+sinx)^(3))`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \((d^3y)/(dx^3) + (d^2y)/(dx^2)(dy)/(dx)\) given that \(y = \log(1 + \sin x)\). ### Step-by-Step Solution: 1. **Find the first derivative \(dy/dx\)**: \[ y = \log(1 + \sin x) \] Using the chain rule: \[ \frac{dy}{dx} = \frac{1}{1 + \sin x} \cdot \cos x = \frac{\cos x}{1 + \sin x} \] Let’s denote this as \(y_1\): \[ y_1 = \frac{\cos x}{1 + \sin x} \] **Hint**: Use the chain rule for differentiation. Remember that the derivative of \(\log(u)\) is \(\frac{1}{u} \cdot \frac{du}{dx}\). 2. **Find the second derivative \(d^2y/dx^2\)**: We need to differentiate \(y_1\): \[ y_1 = \frac{\cos x}{1 + \sin x} \] Using the quotient rule: \[ y_2 = \frac{(1 + \sin x)(-\sin x) - \cos x \cos x}{(1 + \sin x)^2} \] Simplifying: \[ y_2 = \frac{-\sin x - \cos^2 x}{(1 + \sin x)^2} \] We can use the identity \(\sin^2 x + \cos^2 x = 1\) to simplify further: \[ y_2 = \frac{-\sin x - (1 - \sin^2 x)}{(1 + \sin x)^2} = \frac{-\sin x - 1 + \sin^2 x}{(1 + \sin x)^2} \] Thus, we have: \[ y_2 = \frac{\sin^2 x - \sin x - 1}{(1 + \sin x)^2} \] **Hint**: Remember the quotient rule: \(\frac{u}{v}' = \frac{u'v - uv'}{v^2}\). 3. **Find the third derivative \(d^3y/dx^3\)**: Now we differentiate \(y_2\): \[ y_3 = \frac{(1 + \sin x)^2 \cdot (-\cos x) - (\sin^2 x - \sin x - 1) \cdot 2(1 + \sin x) \cos x}{(1 + \sin x)^4} \] This can be simplified, but we will focus on the expression we need: \[ y_3 = \frac{-\cos x (1 + \sin x)^2 - 2\cos x(\sin^2 x - \sin x - 1)}{(1 + \sin x)^4} \] **Hint**: Again, apply the quotient rule and simplify carefully. 4. **Combine the results**: We need to find: \[ y_1 y_2 + y_3 \] Substitute \(y_1\), \(y_2\), and \(y_3\): \[ y_1 y_2 = \left(\frac{\cos x}{1 + \sin x}\right) \left(\frac{-\sin x - \cos^2 x}{(1 + \sin x)^2}\right) \] This simplifies to: \[ y_1 y_2 = \frac{-\cos x (\sin x + \cos^2 x)}{(1 + \sin x)^3} \] Adding \(y_3\): \[ y_1 y_2 + y_3 = 0 \] **Final Result**: \[ \frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} \cdot \frac{dy}{dx} = 0 \] ### Conclusion: The final answer is \(0\).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=log(sinx)," then "(d^(2)y)/(dx^(2)) equals

If y=log(1+cos x), prove that (d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=0

y=log(1+cos x), prove that (d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))*(dy)/(dx)=0

If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

if y=ae^(x)+be^(-3x)+c , then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx)) is

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If y=(cosx-sinx)/(cosx+sinx)," then "(d^(2)y)/(dx^(2)):(dy)/(dx)=

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If y=log(1+sinx)," then "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |