Home
Class 12
MATHS
If x^(2)+xy-y^(2)=1," then "(x-2y)^(3)(d...

If `x^(2)+xy-y^(2)=1," then "(x-2y)^(3)(d^(2)y)/(dx^(2))=`

A

1

B

3

C

5

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \((x - 2y)^3 \frac{d^2y}{dx^2}\) given the equation \(x^2 + xy - y^2 = 1\). ### Step 1: Differentiate the given equation We start with the equation: \[ x^2 + xy - y^2 = 1 \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(x^2) + \frac{d}{dx}(xy) - \frac{d}{dx}(y^2) = 0 \] Using the product rule for \(xy\) and the chain rule for \(y^2\): \[ 2x + \left(x \frac{dy}{dx} + y\right) - 2y \frac{dy}{dx} = 0 \] This simplifies to: \[ 2x + x \frac{dy}{dx} + y - 2y \frac{dy}{dx} = 0 \] ### Step 2: Rearranging to find \(\frac{dy}{dx}\) Rearranging the equation gives: \[ x \frac{dy}{dx} - 2y \frac{dy}{dx} = -2x - y \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx}(x - 2y) = -2x - y \] Thus, we have: \[ \frac{dy}{dx} = \frac{-2x - y}{x - 2y} \] ### Step 3: Differentiate again to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx}\) again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{-2x - y}{x - 2y}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(x - 2y)(-2 - \frac{dy}{dx}) - (-2x - y)(1 - 2\frac{dy}{dx})}{(x - 2y)^2} \] ### Step 4: Substitute \(\frac{dy}{dx}\) into the equation Substituting \(\frac{dy}{dx}\) back into the equation: \[ \frac{d^2y}{dx^2} = \frac{(x - 2y)(-2 - \frac{-2x - y}{x - 2y}) - (-2x - y)(1 - 2\frac{-2x - y}{x - 2y})}{(x - 2y)^2} \] ### Step 5: Simplifying the expression After simplifying the above expression, we can find \(\frac{d^2y}{dx^2}\). ### Step 6: Find \((x - 2y)^3 \frac{d^2y}{dx^2}\) Finally, we multiply \((x - 2y)^3\) by the expression we found for \(\frac{d^2y}{dx^2}\). ### Final Result After performing all the calculations, we find: \[ (x - 2y)^3 \frac{d^2y}{dx^2} = 10 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=1 then (y'=(dy)/(dx),y''=(d^(2)y)/(dx^(2)))

If y^(2)=P(x), then 2(d)/(dx)(y^(3)(d^(2)(y)/(dx^(2))))

If (x)/(y)+(y)/(x)=2," then: "(d^(2)y)/(dx^(2))=

If x^(2)+6xy+y^(2)=10, show that (d^(2)y)/(dx^(2))=(80)/((3x+y)^(3))

If y^(3)-y=2x, then (x^(2)-(1)/(27))(d^(2)y)/(dx^(2))+x(dy)/(d)=y b.(y)/(3) c.(y)/(9) d.(y)/(27)

If x^(2)+y^(2) =1,then (d^(2)y)/(dx^(2)) =

x^(3)+3x^(2)y+xy^(2)-5y^(3)=0 then ((d^(2)y)/(dx^(2)))_(1,1) is

If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=

(1-xy+x^(2)y^(2))dx=x^(2)dy

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If x^(2)+xy-y^(2)=1," then "(x-2y)^(3)(d^(2)y)/(dx^(2))=

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |