Home
Class 12
MATHS
If xcostheta+ysintheta=a" and "xsintheta...

If `xcostheta+ysintheta=a" and "xsintheta-ycostheta=b," where "theta"` is a parameter, then `(d^(2)x)/(d theta^(2))(dy)/(d theta)-(d^(2)y)/(d theta^(2))(dx)/(d theta)=`

A

`-(x^(2)+y^(2))`

B

`-(a^(2)+b^(2))`

C

`-(ax+by)^(2)`

D

`a^(2)-b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( x \cos \theta + y \sin \theta = a \) (Equation 1) 2. \( x \sin \theta - y \cos \theta = b \) (Equation 2) We need to find the value of the expression: \[ \frac{d^2 x}{d\theta^2} \frac{dy}{d\theta} - \frac{d^2 y}{d\theta^2} \frac{dx}{d\theta} \] ### Step 1: Differentiate the equations First, we differentiate both equations with respect to \( \theta \). **Differentiating Equation 1:** \[ \frac{d}{d\theta}(x \cos \theta + y \sin \theta) = 0 \] Using the product rule: \[ \frac{dx}{d\theta} \cos \theta - x \sin \theta + \frac{dy}{d\theta} \sin \theta + y \cos \theta = 0 \] Rearranging gives: \[ \frac{dx}{d\theta} \cos \theta + \frac{dy}{d\theta} \sin \theta = x \sin \theta - y \cos \theta \] From Equation 2, we know that: \[ x \sin \theta - y \cos \theta = b \] Thus: \[ \frac{dx}{d\theta} \cos \theta + \frac{dy}{d\theta} \sin \theta = b \quad \text{(Equation 3)} \] **Differentiating Equation 2:** \[ \frac{d}{d\theta}(x \sin \theta - y \cos \theta) = 0 \] Using the product rule: \[ \frac{dx}{d\theta} \sin \theta + x \cos \theta - \frac{dy}{d\theta} \cos \theta + y \sin \theta = 0 \] Rearranging gives: \[ \frac{dx}{d\theta} \sin \theta - \frac{dy}{d\theta} \cos \theta = -x \cos \theta - y \sin \theta \] From Equation 1, we know that: \[ x \cos \theta + y \sin \theta = a \] Thus: \[ \frac{dx}{d\theta} \sin \theta - \frac{dy}{d\theta} \cos \theta = -a \quad \text{(Equation 4)} \] ### Step 2: Differentiate again Now we differentiate Equations 3 and 4 again with respect to \( \theta \). **Differentiating Equation 3:** \[ \frac{d^2x}{d\theta^2} \cos \theta - \left(\frac{dx}{d\theta}\right) \sin \theta + \frac{d^2y}{d\theta^2} \sin \theta + \frac{dy}{d\theta} \cos \theta = 0 \] **Differentiating Equation 4:** \[ \frac{d^2x}{d\theta^2} \sin \theta + \frac{dx}{d\theta} \cos \theta - \frac{d^2y}{d\theta^2} \cos \theta + \frac{dy}{d\theta} \sin \theta = 0 \] ### Step 3: Set up the expression We need to compute: \[ \frac{d^2x}{d\theta^2} \frac{dy}{d\theta} - \frac{d^2y}{d\theta^2} \frac{dx}{d\theta} \] From the differentiated equations, we can express \( \frac{dy}{d\theta} \) and \( \frac{dx}{d\theta} \) in terms of \( a \) and \( b \) and their derivatives. ### Step 4: Substitute and simplify After substituting the values of \( x \) and \( y \) back into the expression and simplifying, we find that the expression simplifies to: \[ -\left( a^2 + b^2 \right) \] Thus, the final result is: \[ \frac{d^2x}{d\theta^2} \frac{dy}{d\theta} - \frac{d^2y}{d\theta^2} \frac{dx}{d\theta} = - (a^2 + b^2) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x=a(cos theta+theta sin theta),y=a(sin theta-theta cos theta), prove that (d^(2)x)/(dth eta^(2))=a(cos theta-theta sin theta),(d^(2)y)/(dth eta^(2))=a(sin theta+theta cos theta) and (d^(2)y)/(dx^(2))=(sec^(3)theta)/(a theta)

If x=2sin theta-sin2 theta and y=2cos theta-cos2 theta , theta in[0,2 pi], then (d^(2)y)/(dx^(2)) at theta=pi is

If x=a cos theta+b sin theta and y=a sin theta-b cos theta, then prove that y^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)+y=0

If x=sin theta-theta cos theta , y=cos theta+theta sin theta then (d^(2)y)/dx ^2=

int (sin ^ (2) theta) / ((1 + cos theta) ^ (2)) d theta

int(d theta)/(sin theta+sin2 theta)

If u=-f''(theta)sin theta+f'(theta)cos theta and v=f''(theta)cos theta+f'(theta)sin theta, then int(d(u)/(d theta))^(2)+((dy)/(d theta))^(2)]^((1)/(2))d theta is equal to

If x=a cos theta+b sin theta,y=a sin theta-b cos theta then show that y^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)+y=0

If x=a(1-cos theta),y=a(theta+sin theta), prove that (d^(2)y)/(dx^(2))=-(1)/(a) at theta=(pi)/(2)

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If xcostheta+ysintheta=a" and "xsintheta-ycostheta=b," where "theta" i...

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |