Home
Class 12
MATHS
If e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x...

If `e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))," then "(dy)/(dx)=`

A

`(1)/(xsqrt(1-x^(2)))`

B

`(1)/(sqrt(1-x^(2)))`

C

`(-1)/(xsqrt(1-x^(2)))`

D

`(-1)/(sqrt(1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( e^{y} = \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} - \sqrt{1-x}} \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Simplify the Expression We start with the given equation: \[ e^{y} = \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} - \sqrt{1-x}} \] To simplify, we can multiply the numerator and denominator by the conjugate of the denominator: \[ e^{y} = \frac{(\sqrt{1+x} + \sqrt{1-x})^2}{(\sqrt{1+x})^2 - (\sqrt{1-x})^2} \] ### Step 2: Expand the Numerator and Denominator Calculating the numerator: \[ (\sqrt{1+x} + \sqrt{1-x})^2 = (1+x) + (1-x) + 2\sqrt{(1+x)(1-x)} = 2 + 2\sqrt{1-x^2} \] Calculating the denominator: \[ (\sqrt{1+x})^2 - (\sqrt{1-x})^2 = (1+x) - (1-x) = 2x \] Thus, we have: \[ e^{y} = \frac{2 + 2\sqrt{1-x^2}}{2x} \] This simplifies to: \[ e^{y} = \frac{1 + \sqrt{1-x^2}}{x} \] ### Step 3: Differentiate Both Sides Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(e^{y}) = \frac{d}{dx}\left(\frac{1 + \sqrt{1-x^2}}{x}\right) \] Using the chain rule on the left side: \[ e^{y} \frac{dy}{dx} \] For the right side, we will use the quotient rule: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \] where \( u = 1 + \sqrt{1-x^2} \) and \( v = x \). Calculating \( \frac{du}{dx} \): \[ \frac{du}{dx} = 0 + \frac{1}{2\sqrt{1-x^2}}(-2x) = -\frac{x}{\sqrt{1-x^2}} \] Calculating \( \frac{dv}{dx} \): \[ \frac{dv}{dx} = 1 \] Applying the quotient rule: \[ \frac{d}{dx}\left(\frac{1 + \sqrt{1-x^2}}{x}\right) = \frac{x\left(-\frac{x}{\sqrt{1-x^2}}\right) - (1 + \sqrt{1-x^2})}{x^2} \] This simplifies to: \[ \frac{-\frac{x^2}{\sqrt{1-x^2}} - (1 + \sqrt{1-x^2})}{x^2} \] ### Step 4: Set the Derivatives Equal Setting the derivatives equal gives us: \[ e^{y} \frac{dy}{dx} = \frac{-\frac{x^2}{\sqrt{1-x^2}} - (1 + \sqrt{1-x^2})}{x^2} \] ### Step 5: Solve for \( \frac{dy}{dx} \) Now, isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{-\frac{x^2}{\sqrt{1-x^2}} - (1 + \sqrt{1-x^2})}{x^2 e^{y}} \] ### Step 6: Substitute \( e^{y} \) Recall that \( e^{y} = \frac{1 + \sqrt{1-x^2}}{x} \): \[ \frac{dy}{dx} = \frac{-\frac{x^2}{\sqrt{1-x^2}} - (1 + \sqrt{1-x^2})}{x^2 \cdot \frac{1 + \sqrt{1-x^2}}{x}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-\frac{x^2}{\sqrt{1-x^2}} - (1 + \sqrt{1-x^2})}{x(1 + \sqrt{1-x^2})} \] ### Final Result Thus, the final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{1}{x \sqrt{1-x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}, find (dy)/(dx)

If y=tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))] then prove that (dy)/(dx)=(1)/(2sqrt(1-x^(2)))

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx)=

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

y=(tan^(-1)(sqrt(1+x^(2))+sqrt(1-x^(2))))/(sqrt(1+x^(2))-sqrt(1-x^(2))) then (dy)/(dx)

If y=sqrt((sqrt(x-1))/(sqrt(x+1)))," then "(dy)/(dx)|_(x=4)=

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))," then "(dy)/(dx)...

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |