Home
Class 12
MATHS
If f(x)=log(2)[log(3)(log(5)x)]," then "...

If `f(x)=log_(2)[log_(3)(log_(5)x)]," then "f'(125)=`

A

`(1)/(125log2log3log5)`

B

`(1)/(375log2log3log5)`

C

`(1)/(500log2log3log5)`

D

`(1)/(250log2log3log5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(125) \) for the function \( f(x) = \log_2(\log_3(\log_5(x))) \), we will follow these steps: ### Step 1: Differentiate the function We will use the chain rule to differentiate \( f(x) \). 1. Start with the outer function \( \log_2(u) \), where \( u = \log_3(\log_5(x)) \). \[ f'(x) = \frac{1}{\ln(2)} \cdot u' \] 2. Now differentiate \( u = \log_3(v) \), where \( v = \log_5(x) \). \[ u' = \frac{1}{\ln(3)} \cdot v' \] 3. Next, differentiate \( v = \log_5(x) \). \[ v' = \frac{1}{\ln(5)} \cdot \frac{1}{x} \] Combining these derivatives: \[ f'(x) = \frac{1}{\ln(2)} \cdot \frac{1}{\ln(3)} \cdot \frac{1}{\ln(5)} \cdot \frac{1}{x} \] ### Step 2: Substitute \( x = 125 \) Now we will substitute \( x = 125 \) into the derivative we found: \[ f'(125) = \frac{1}{\ln(2) \cdot \ln(3) \cdot \ln(5)} \cdot \frac{1}{125} \] ### Step 3: Simplify the expression Thus, we can express \( f'(125) \) as: \[ f'(125) = \frac{1}{125 \cdot \ln(2) \cdot \ln(3) \cdot \ln(5)} \] ### Final Result The final result for \( f'(125) \) is: \[ f'(125) = \frac{1}{125 \cdot \ln(2) \cdot \ln(3) \cdot \ln(5)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

If f(x)=log_(a)(log_(a)x) , then f'(x), is

If f(x) = log_(x^(2)) (log_(e) x) "then f' (x) at x= e" is

If f(x)=log_(a)(log_(a)x) then f'(x) is equal to

Find the domain of f(x)=log_(4)log_(3)log_(2)(|x]-1|-2)

If f(x)=log_(x^(3))(log x^(2)), then f'(x) at x=e is

The domain of definition of f(x) = log_(2) (log_(3) (log_(4) x)) , is

The domain of the function f(x)=log_(2)(log_(3)(log_(4)x)) is

If f(x)=log_(x)(log_(e)x) , then f'(x) at x=e is equal to