Home
Class 12
MATHS
If x=t+(1)/(t),y=t-(1)/(t)," where "tne0...

If `x=t+(1)/(t),y=t-(1)/(t)," where "tne0," then: "(d^(2)y)/(dx^(2))=`

A

`-4t(t^(2)-1)^(-2)`

B

`-4t^(3)(t^(2)-1)^(-3)`

C

`(t^(2)+1)(t^(2)-1)^(-2)`

D

`-4t^(2)(t^(2)-1)^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of \( y \) with respect to \( x \) given the equations: \[ x = t + \frac{1}{t}, \quad y = t - \frac{1}{t} \] where \( t \neq 0 \). ### Step 1: Differentiate \( x \) and \( y \) with respect to \( t \) First, we differentiate \( x \) with respect to \( t \): \[ \frac{dx}{dt} = \frac{d}{dt}\left(t + \frac{1}{t}\right) = 1 - \frac{1}{t^2} \] Next, we differentiate \( y \) with respect to \( t \): \[ \frac{dy}{dt} = \frac{d}{dt}\left(t - \frac{1}{t}\right) = 1 + \frac{1}{t^2} \] ### Step 2: Find \( \frac{dy}{dx} \) Using the chain rule, we find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1 + \frac{1}{t^2}}{1 - \frac{1}{t^2}} \] ### Step 3: Simplify \( \frac{dy}{dx} \) To simplify \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{(1 + \frac{1}{t^2})}{(1 - \frac{1}{t^2})} = \frac{t^2 + 1}{t^2 - 1} \] ### Step 4: Differentiate \( \frac{dy}{dx} \) with respect to \( t \) Now we need to differentiate \( \frac{dy}{dx} \) with respect to \( t \): Let \( u = t^2 + 1 \) and \( v = t^2 - 1 \). Then: \[ \frac{dy}{dx} = \frac{u}{v} \] Using the quotient rule: \[ \frac{d}{dt}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Calculating \( \frac{du}{dt} \) and \( \frac{dv}{dt} \): \[ \frac{du}{dt} = 2t, \quad \frac{dv}{dt} = 2t \] So we have: \[ \frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{(t^2 - 1)(2t) - (t^2 + 1)(2t)}{(t^2 - 1)^2} \] ### Step 5: Simplify \( \frac{d}{dt}\left(\frac{dy}{dx}\right) \) Simplifying the numerator: \[ = \frac{2t(t^2 - 1 - t^2 - 1)}{(t^2 - 1)^2} = \frac{2t(-2)}{(t^2 - 1)^2} = \frac{-4t}{(t^2 - 1)^2} \] ### Step 6: Find \( \frac{dx}{dt} \) We already calculated \( \frac{dx}{dt} \): \[ \frac{dx}{dt} = 1 - \frac{1}{t^2} \] ### Step 7: Find \( \frac{d^2y}{dx^2} \) Now we can find \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{-4t}{(t^2 - 1)^2}}{1 - \frac{1}{t^2}} \] ### Step 8: Final simplification Substituting \( \frac{dx}{dt} \): \[ \frac{d^2y}{dx^2} = \frac{-4t}{(t^2 - 1)^2} \cdot \frac{t^2}{t^2 - 1} = \frac{-4t^3}{(t^2 - 1)^3} \] Thus, the final answer is: \[ \frac{d^2y}{dx^2} = -\frac{4t^3}{(t^2 - 1)^3} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x=t^(2)+(1)/(t^(2)),y=t-(1)/(t)," then "(dy)/(dx)=

If x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/(dx)=

If x=a(t-(1)/(t)),y=a(t+(1)/(t)) , where t be the parameter, then (dy)/(dx)=?

If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

If x=(t+(1)/(t)),y=(t-(1)/(t)) , then (dy)/(dx)=?

If x=log(1+t^(2)),y=2t-2tan^(-1)t, then at t = 1(d^(2)y)/(dx^(2)) equals-

If x=tlogt,y=t^(t)," then "(d^2y)/(dx^(2))=

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If x=t+(1)/(t),y=t-(1)/(t)," where "tne0," then: "(d^(2)y)/(dx^(2))=

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |