Home
Class 12
MATHS
If y=e^(x+e^(x+e^(x+..."to"oo)))," then:...

If `y=e^(x+e^(x+e^(x+..."to"oo)))," then: "(dy)/(dx)=`

A

`(x)/(1-x)`

B

`(y)/(1+y)`

C

`(y)/(1-y)`

D

`(1-y)/(y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = e^{x + e^{x + e^{x + \ldots}}} \), we can follow these steps: ### Step 1: Rewrite the equation Since the expression inside the exponent is the same as \( y \), we can rewrite the equation as: \[ y = e^{x + y} \] ### Step 2: Differentiate both sides Now we will differentiate both sides with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(e^{x + y}) \] ### Step 3: Apply the chain rule Using the chain rule on the right-hand side, we have: \[ \frac{dy}{dx} = e^{x + y} \left( \frac{d}{dx}(x + y) \right) \] This gives: \[ \frac{dy}{dx} = e^{x + y} \left( 1 + \frac{dy}{dx} \right) \] ### Step 4: Substitute \( e^{x + y} \) Since \( e^{x + y} = y \), we can substitute this into our equation: \[ \frac{dy}{dx} = y \left( 1 + \frac{dy}{dx} \right) \] ### Step 5: Expand and rearrange Expanding the right-hand side: \[ \frac{dy}{dx} = y + y \frac{dy}{dx} \] Now, we can rearrange this to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} - y \frac{dy}{dx} = y \] Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx} (1 - y) = y \] ### Step 6: Solve for \( \frac{dy}{dx} \) Finally, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{y}{1 - y} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{y}{1 - y} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y = e^(x) + e^(x + ...oo) " then " (dy)/(dx)= ?

If y =e^(x+e^(x+e^(x+...infty ))),then (dy)/(dx) =

If x=e^(y+e^(y^(+..."to"00))),xgt0,"then"(dy)/(dx)

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=(e^(3)-e^(2x))/(e^(3)+e^(2x))," then: "(dy)/(dx)=

If y=e^(x+e^(x+e^(x)+cdots*oo)), prove that (dy)/(dx)=(y)/(1-y)

if y=x^(e^(y+e^(y+e^(y+....... to oo))) , then " (dy)/(dx) is