Home
Class 12
MATHS
If y=(1-cosx)/(1+cosx)," then: "(dy)/(dx...

If `y=(1-cosx)/(1+cosx)," then: "(dy)/(dx)=`

A

`sec^(2)x`

B

`tanxsec^(2)x`

C

`"tan"(x)/(2)sec^(2)"(x)/(2)`

D

`(1+sinx)/(1-sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{1 - \cos x}{1 + \cos x} \), we will use the quotient rule of differentiation. The quotient rule states that if \( y = \frac{u}{v} \), then \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = 1 - \cos x \) and \( v = 1 + \cos x \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = 1 - \cos x \) - \( v = 1 + \cos x \) ### Step 2: Differentiate \( u \) and \( v \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). 1. Differentiate \( u \): \[ \frac{du}{dx} = 0 - (-\sin x) = \sin x \] 2. Differentiate \( v \): \[ \frac{dv}{dx} = 0 + (-\sin x) = -\sin x \] ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{(1 + \cos x)(\sin x) - (1 - \cos x)(-\sin x)}{(1 + \cos x)^2} \] ### Step 4: Simplify the Numerator Now simplify the numerator: \[ \frac{dy}{dx} = \frac{(1 + \cos x)\sin x + (1 - \cos x)\sin x}{(1 + \cos x)^2} \] Combine the terms in the numerator: \[ = \frac{(1 + \cos x + 1 - \cos x)\sin x}{(1 + \cos x)^2} \] \[ = \frac{2\sin x}{(1 + \cos x)^2} \] ### Step 5: Final Expression Thus, the derivative is: \[ \frac{dy}{dx} = \frac{2\sin x}{(1 + \cos x)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=sinx/(1+cosx) then (dy)/(dx)=

"If "y=logsqrt((1-cosx)/(1+cosx))", show that "(dy)/(dx)="cosec x".

If y=(cosx)^((cosx)) then (dy)/(dx) is equal to :

If y=tan^(-1)((1-cosx)/(sinx)), then (dy)/(dx) is

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

If y=tan^(-1)((sinx+cosx)/(cosx-sinx))," then "(dy)/(dx)" at "x=(pi)/(4)

If y=(cosx-sinx)/(cosx+sinx)," then "(d^(2)y)/(dx^(2)):(dy)/(dx)=

If y=(a-b*cosx)/(a+b*cosx)," then "(a+b*cosx)^(2)y_(1)=

If y=log(sinx-cosx) , then (dy)/(dx) at x=(pi)/(2) is :