Home
Class 12
MATHS
If f(x)=(1-cosx)/(1-sinx)," then: "f'((p...

If `f(x)=(1-cosx)/(1-sinx)," then: "f'((pi)/(2))` is

A

1

B

0

C

`oo`

D

indeterminate

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=cosx+sinx and g(x)=x^(2)-1 , then g(f(x)) is injective in the interval

"Let " f(x)=int x^(sinx)(1+xcosx*In x+sinx)dx " and " f((pi)/(2))=(pi^(2))/(4). " Then the value of " cos f(pi) " is"- .

If f(x)=(1+sinx-cosx)/(1-sinx-cosx), x ne 0 . The value of f(0) so that f is a continuous function is

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

Let f(x)=(sqrt2-(cosx+sinx))/(1-sin2x), x ne pi//4 . The value f(pi//4) so that f is continuous is (sqrt2=1.41)

if f(x)=x+sinx , then find (2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx