Home
Class 12
MATHS
If f(x)=cot^(-1)sqrt(cos2x)," then: "f'(...

If `f(x)=cot^(-1)sqrt(cos2x)," then: "f'((pi)/(6))=`

A

`(1)/sqrt(3)`

B

`(2)/sqrt(3)`

C

`(sqrt2)/(3)`

D

`-(2)/(sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) = \cot^{-1}(\sqrt{\cos(2x)}) \) and then evaluate it at \( x = \frac{\pi}{6} \). ### Step 1: Differentiate the function The derivative of \( \cot^{-1}(u) \) is given by: \[ f'(x) = -\frac{u'}{1 + u^2} \] where \( u = \sqrt{\cos(2x)} \). First, we need to find \( u' \): \[ u = \sqrt{\cos(2x)} \] Using the chain rule, we differentiate \( u \): \[ u' = \frac{1}{2\sqrt{\cos(2x)}} \cdot (-\sin(2x) \cdot 2) = -\frac{\sin(2x)}{\sqrt{\cos(2x)}} \] Now substituting \( u \) and \( u' \) into the derivative formula: \[ f'(x) = -\frac{-\frac{\sin(2x)}{\sqrt{\cos(2x)}}}{1 + \cos(2x)} \] This simplifies to: \[ f'(x) = \frac{\sin(2x)}{\sqrt{\cos(2x)}(1 + \cos(2x))} \] ### Step 2: Evaluate the derivative at \( x = \frac{\pi}{6} \) Now we substitute \( x = \frac{\pi}{6} \): 1. Calculate \( \cos(2x) \): \[ \cos(2 \cdot \frac{\pi}{6}) = \cos(\frac{\pi}{3}) = \frac{1}{2} \] 2. Calculate \( \sin(2x) \): \[ \sin(2 \cdot \frac{\pi}{6}) = \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2} \] 3. Substitute these values into \( f'(\frac{\pi}{6}) \): \[ f'\left(\frac{\pi}{6}\right) = \frac{\frac{\sqrt{3}}{2}}{\sqrt{\frac{1}{2}}(1 + \frac{1}{2})} \] 4. Simplify the expression: \[ = \frac{\frac{\sqrt{3}}{2}}{\sqrt{\frac{1}{2}} \cdot \frac{3}{2}} = \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2} \cdot \frac{3}{2}} = \frac{\sqrt{3}}{3\sqrt{2}} \] 5. Finally, simplify: \[ = \frac{\sqrt{3}}{3\sqrt{2}} = \frac{\sqrt{6}}{6} \] Thus, the final answer is: \[ f'\left(\frac{\pi}{6}\right) = \frac{\sqrt{6}}{6} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(1+cos^(2)(x^(2))), then f'((sqrt(pi))/(2)) is (sqrt(pi))/(6)(b)-sqrt(pi/6)1/sqrt(6)(d)pi/sqrt(6)

If int(dx)/(sin^(6)x+cos^(6)x)=cot^(-1)(f(x))+c then [f((pi)/(6))] = ( Where [.] denotes G.I.F)

If f(x)=2 x cot ^(-1)x + log (sqrt(1+x^2)-x then f(x)

If the function f(x)=(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x)) If the value of f((pi)/(3))=a+b sqrt(c) then a+b+c=

If the function y=f(x) satisfies f'(x)+f(x)cot x-2cos x=0,f((pi)/(2))=1 then f((pi)/(3)) is equal to

If f(x)=(sqrt(cos((pi)/(2)-x)))/(1-cos(x+(pi)/(2))^((1)/(3))) and g(x)=(1)/(sqrt([sin x])) then range of g(x)-f(x) contains

If f(x)=cos ec(x-(pi)/(3))cos ec(x-(pi)/(6)) then the value of int_(0)^((pi)/(2))f(x)dx is

If f(x) =cos (sin x^(2)) , then f'(x) at x=sqrt(pi/2) is

If f(x)=|cos x| ,then [sqrt(6)f'((pi)/(4))] is : (where [.] denotes greater integer function