Home
Class 12
MATHS
If sqrt(x)+sqrt(y)=sqrt(a)," then "y(2)"...

If `sqrt(x)+sqrt(y)=sqrt(a)," then "y_(2)" at "x=a` is

A

a

B

`(1)/(2a)`

C

`(1)/(a)`

D

`sqrt(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sqrt{x} + \sqrt{y} = \sqrt{a} \] We need to find the second derivative \(y''\) at \(x = a\). ### Step 1: Differentiate the equation with respect to \(x\) Differentiating both sides with respect to \(x\): \[ \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0 \] ### Step 2: Rearranging the equation From the above equation, we can isolate \(\frac{dy}{dx}\): \[ \frac{1}{2\sqrt{y}} \frac{dy}{dx} = -\frac{1}{2\sqrt{x}} \] Multiplying both sides by \(2\sqrt{y}\): \[ \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}} \] ### Step 3: Find the second derivative \(y''\) Now we need to differentiate \(\frac{dy}{dx}\) to find \(y''\): \[ y' = -\frac{\sqrt{y}}{\sqrt{x}} \] Using the quotient rule, where \(u = -\sqrt{y}\) and \(v = \sqrt{x}\): \[ y'' = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \(\frac{du}{dx}\) and \(\frac{dv}{dx}\): - \(\frac{du}{dx} = -\frac{1}{2\sqrt{y}} \frac{dy}{dx}\) - \(\frac{dv}{dx} = \frac{1}{2\sqrt{x}}\) Substituting these into the quotient rule: \[ y'' = \frac{\sqrt{x} \left(-\frac{1}{2\sqrt{y}} \frac{dy}{dx}\right) - (-\sqrt{y}) \left(\frac{1}{2\sqrt{x}}\right)}{x} \] ### Step 4: Substitute \(\frac{dy}{dx}\) Substituting \(\frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}\): \[ y'' = \frac{\sqrt{x} \left(-\frac{1}{2\sqrt{y}} \left(-\frac{\sqrt{y}}{\sqrt{x}}\right)\right) + \frac{\sqrt{y}}{2\sqrt{x}}}{x} \] This simplifies to: \[ y'' = \frac{\sqrt{x} \cdot \frac{1}{2\sqrt{y}} \cdot \frac{\sqrt{y}}{\sqrt{x}} + \frac{\sqrt{y}}{2\sqrt{x}}}{x} \] ### Step 5: Simplifying the expression The terms simplify: \[ y'' = \frac{1}{2x} + \frac{\sqrt{y}}{2x\sqrt{x}} \] ### Step 6: Substitute \(x = a\) Now we substitute \(x = a\): From the original equation, we have: \[ \sqrt{y} = \sqrt{a} - \sqrt{a} = 0 \] Thus, we can substitute back into our expression for \(y''\): \[ y'' = \frac{1}{2a} + \frac{0}{2a\sqrt{a}} = \frac{1}{2a} \] ### Final Answer Thus, the second derivative \(y''\) at \(x = a\) is: \[ \boxed{\frac{1}{2a}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If sqrt(x) + sqrt(y) = sqrt(a) , then (dy)/(dx) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt(a))

y=sqrt(x+sqrt(x))

x sqrt(x)+y sqrt(y)=a sqrt(a) then find (dy)/(dx)

sqrt(x/y) + sqrt(y/x) = 6

sqrt (2x) -sqrt (3y) = 0sqrt (3x) -sqrt (3y) = 0

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=2sqrt(5)+sqrt(3) and y=2sqrt(5)-sqrt(3) , then x^(4)+y^(4) =

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If a=1+sqrt(2)+sqrt(3) and b=1+sqrt(2)-sqrt(3) , then a^(2)+b^(2)-2a-2b=

Suppose that log_(10)(x-2)+log_(10)y=0 and sqrt(x)+sqrt(y-2)=sqrt(x+y) Then the value of (x+y) is

If sqrt(x)+sqrt(y)=17 and sqrt(x)-sqrt(y)=1, then the value of is sqrt(xy)