Home
Class 12
MATHS
If sin(x+y)=log(x+y)," then: "(dy)/(dx)=...

If `sin(x+y)=log(x+y)," then: "(dy)/(dx)=`

A

`tan(x+y)`

B

`log(x+y)`

C

`-1`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(x+y) = \log(x+y) \) for \( \frac{dy}{dx} \), we will differentiate both sides with respect to \( x \). ### Step-by-Step Solution: 1. **Differentiate both sides**: We start with the equation: \[ \sin(x+y) = \log(x+y) \] Now, we differentiate both sides with respect to \( x \). 2. **Differentiate the left side**: Using the chain rule, the derivative of \( \sin(x+y) \) is: \[ \frac{d}{dx}[\sin(x+y)] = \cos(x+y) \cdot \left(1 + \frac{dy}{dx}\right) \] 3. **Differentiate the right side**: The derivative of \( \log(x+y) \) is: \[ \frac{d}{dx}[\log(x+y)] = \frac{1}{x+y} \cdot \left(1 + \frac{dy}{dx}\right) \] 4. **Set the derivatives equal**: Now we set the derivatives from both sides equal to each other: \[ \cos(x+y) \cdot \left(1 + \frac{dy}{dx}\right) = \frac{1}{x+y} \cdot \left(1 + \frac{dy}{dx}\right) \] 5. **Factor out \( (1 + \frac{dy}{dx}) \)**: We can factor \( (1 + \frac{dy}{dx}) \) from both sides: \[ (1 + \frac{dy}{dx}) \left(\cos(x+y) - \frac{1}{x+y}\right) = 0 \] 6. **Solve for \( \frac{dy}{dx} \)**: This gives us two cases: - Case 1: \( 1 + \frac{dy}{dx} = 0 \) which leads to \( \frac{dy}{dx} = -1 \) - Case 2: \( \cos(x+y) - \frac{1}{x+y} = 0 \) which leads to \( \cos(x+y) = \frac{1}{x+y} \) However, we are primarily interested in the first case for \( \frac{dy}{dx} \). ### Final Result: Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=log x^(x), then (dy)/(dx)=

If : sin(x+y)+cos(x+y)=log(x+y)," then: "(dy)/(dx)=

If y =log x^(x) ,then (dy)/(dx) =

If y=(log x)^(x) then (dy)/(dx) =

If y =log (log x) then (dy)/(dx) =

If log (x+y) =log (xy ) +a, then (dy)/(dx) =