Home
Class 12
MATHS
If f(a)=a^(2),phi(a)=b^(2)" and "f'(a)=n...

If `f(a)=a^(2),phi(a)=b^(2)" and "f'(a)=n*phi'(a)," then: "underset(xtoa)("lim")(sqrt(f(x))-a)/(sqrtphi(x)-b)=`

A

`(b)/(a)`

B

`n(b)/(a)`

C

`(a)/(b)`

D

`n(a)/(b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the limit: \[ \lim_{x \to a} \frac{\sqrt{f(x)} - a}{\sqrt{\phi(x)} - b} \] Given: - \( f(a) = a^2 \) - \( \phi(a) = b^2 \) - \( f'(a) = n \cdot \phi'(a) \) ### Step 1: Substitute the values of \( f(x) \) and \( \phi(x) \) We know that \( f(x) = x^2 \) and \( \phi(x) = y^2 \) for some function \( y \). Thus, we can write: \[ \sqrt{f(x)} = \sqrt{x^2} = x \] \[ \sqrt{\phi(x)} = \sqrt{y^2} = y \] ### Step 2: Rewrite the limit expression Now substituting these into the limit expression: \[ \lim_{x \to a} \frac{x - a}{y - b} \] ### Step 3: Evaluate the limit directly When we substitute \( x = a \) and \( y = b \), we get: \[ \frac{a - a}{b - b} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and the denominator: - The derivative of the numerator \( x - a \) with respect to \( x \) is \( 1 \). - The derivative of the denominator \( y - b \) with respect to \( x \) is \( \frac{dy}{dx} \). Thus, we have: \[ \lim_{x \to a} \frac{1}{\frac{dy}{dx}} \] ### Step 5: Find \( \frac{dy}{dx} \) Using the chain rule, we know that: \[ \frac{dy}{dx} = \phi'(x) = \frac{d}{dx}(y^2) = 2y \cdot \frac{dy}{dx} \] From the problem, we know that \( f'(a) = n \cdot \phi'(a) \). Hence, we can express this as: \[ f'(a) = 2a \quad \text{and} \quad \phi'(a) = 2b \] Thus, \[ 2a = n \cdot 2b \implies n = \frac{a}{b} \] ### Step 6: Substitute back into the limit Now substituting back into our limit expression: \[ \lim_{x \to a} \frac{1}{\frac{dy}{dx}} = \frac{1}{\phi'(a)} = \frac{1}{2b} \] ### Step 7: Final limit calculation Now substituting \( n = \frac{a}{b} \): \[ \lim_{x \to a} \frac{\sqrt{f(x)} - a}{\sqrt{\phi(x)} - b} = \frac{n \cdot b}{a} = \frac{a}{b} \cdot \frac{b}{a} = n \] ### Conclusion Thus, the final answer for the limit is: \[ \frac{n \cdot b}{a} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=2^(2x-1) and phi(x)=-2^(x)+2x log2 If f'(x)>phi(x), then

phi(x)=f(x)*g(x)" and f'(x)*g'(x)=k ,then (2k)/(f(x)*g(x))=

If f(x)=x^(3)-x and phi (x)= sin 2x , then

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If f(a)=a^(2),phi(a)=b^(2)" and "f'(a)=n*phi'(a)," then: "underset(xto...

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |