Home
Class 12
MATHS
If y=sqrt(x)+(1)/(sqrt(x))," then: "2x(d...

If `y=sqrt(x)+(1)/(sqrt(x))," then: "2x(dy)/(dx)+y=`

A

`sqrt(x)`

B

`sqrt(x)`

C

`3sqrt(x)`

D

`(3)/(sqrt(x))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx)=

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt((x)/(a))+sqrt((a)/(x))," then: "2xy(dy)/(dx)=

If y= (sqrt( x) +(1)/(sqrt(x)) ) ^(5) , then (dy)/(dx) =

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If sqrt(x)+sqrt(y)=sqrt(a)," then "(dy)/(dx)=

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y= sqrt (x+ sqrt (x+ sqrt (x))),then (dy)/(dx) =

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))