Home
Class 12
MATHS
If x=t*logt,y=(logt)/(t)," then the valu...

If `x=t*logt,y=(logt)/(t)," then the value of "(dy)/(dx)" at "t=1` is

A

1

B

e

C

0

D

`1+logt`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{dy}{dx}\) at \(t=1\) given the equations \(x = t \log t\) and \(y = \frac{\log t}{t}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = t \log t \] Using the product rule, where \(u = t\) and \(v = \log t\): \[ \frac{dx}{dt} = u \frac{dv}{dt} + v \frac{du}{dt} \] Calculating the derivatives: - \(\frac{du}{dt} = 1\) - \(\frac{dv}{dt} = \frac{1}{t}\) Now substituting: \[ \frac{dx}{dt} = t \cdot \frac{1}{t} + \log t \cdot 1 = 1 + \log t \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = \frac{\log t}{t} \] Using the quotient rule, where \(u = \log t\) and \(v = t\): \[ \frac{dy}{dt} = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Calculating the derivatives: - \(\frac{du}{dt} = \frac{1}{t}\) - \(\frac{dv}{dt} = 1\) Now substituting: \[ \frac{dy}{dt} = \frac{t \cdot \frac{1}{t} - \log t \cdot 1}{t^2} = \frac{1 - \log t}{t^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the expressions we found: \[ \frac{dy}{dx} = \frac{\frac{1 - \log t}{t^2}}{1 + \log t} \] ### Step 4: Evaluate \(\frac{dy}{dx}\) at \(t = 1\) Now we substitute \(t = 1\): - \(\log 1 = 0\) Thus: \[ \frac{dy}{dx} = \frac{1 - 0}{1^2} \cdot \frac{1}{1 + 0} = \frac{1}{1} = 1 \] ### Final Answer The value of \(\frac{dy}{dx}\) at \(t = 1\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x=t-1/t, and y=t+1/t," then the value of "(dy)/(dx)" at "t=2 is

Let x=2(t+(1)/(t)) and y=2(t-(1)/(t)),t!=0. Then,the value of (dy)/(dx) at t=2 is

If : x=logt" and "y=(1)/(t) then :

If tan x = (2t)/(1 -t^(2)) " and sin y" = (2t)/(1 + t^(2)) , then the value of (dy)/(dx) is

If x=cos^(-1)t,y=log(1-t^(2))," then "((dy)/(dx))" at "t=(1)/(2) is

If x=at,y=(a)/(t)," then "(dy)/(dx)=

If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

If x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/(dx)=

If " "x=t^(2),y=t^(3) ," then "(dy)/(dx)" at "t=-1" is "

If x=(1+log t)/(t^(2)),y=(3+2log t)/(t), find (dy)/(dx)

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If x=t*logt,y=(logt)/(t)," then the value of "(dy)/(dx)" at "t=1 is

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |