Home
Class 12
MATHS
(d)/(dx)((x^(2))/(x-1))=...

`(d)/(dx)((x^(2))/(x-1))=`

A

`1+(1)/((x-1)^(2))`

B

`(1)/((x-1)^(2))-1`

C

`1-(1)/((x-1)^(2))`

D

`(-1)/((x-1)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left(\frac{x^2}{x-1}\right)\), we will use the quotient rule for differentiation. The quotient rule states that if you have a function \(\frac{u}{v}\), then its derivative is given by: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \(u = x^2\) and \(v = x - 1\). ### Step 1: Identify \(u\) and \(v\) Let: - \(u = x^2\) - \(v = x - 1\) ### Step 2: Find \(\frac{du}{dx}\) and \(\frac{dv}{dx}\) Now, we need to find the derivatives of \(u\) and \(v\): - \(\frac{du}{dx} = \frac{d}{dx}(x^2) = 2x\) - \(\frac{dv}{dx} = \frac{d}{dx}(x - 1) = 1\) ### Step 3: Apply the Quotient Rule Now, we can apply the quotient rule: \[ \frac{d}{dx}\left(\frac{x^2}{x-1}\right) = \frac{(x - 1)(2x) - (x^2)(1)}{(x - 1)^2} \] ### Step 4: Simplify the Numerator Now, let's simplify the numerator: \[ = \frac{(2x(x - 1)) - x^2}{(x - 1)^2} \] \[ = \frac{(2x^2 - 2x) - x^2}{(x - 1)^2} \] \[ = \frac{2x^2 - 2x - x^2}{(x - 1)^2} \] \[ = \frac{x^2 - 2x}{(x - 1)^2} \] ### Step 5: Factor the Numerator Now, we can factor the numerator: \[ = \frac{x(x - 2)}{(x - 1)^2} \] ### Final Answer Thus, the derivative \(\frac{d}{dx}\left(\frac{x^2}{x-1}\right)\) is: \[ \frac{x(x - 2)}{(x - 1)^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(x^(x))=?

differentiate (2)/(x+1)-(x^(2))/(3x-1)

(d)/(dx)(x^((1)/(x)))

(d)/(dx)(3x^(2)+2x)=

(d)/(dx)=(-2x^(2)) =

Evaluate: (d)/(dx)((1)/(x))

(d)/(dx)(x^((1)/(3)))=

(d)/(dx)(int(1)/(x^(3)(x-1))dx)=

(d)/(dx)(sec^(-1)x)

Evaluate: (d)/(dx)(x^(1//2))