Home
Class 12
MATHS
If y=cos2x*sin3x," then "(d^(2)y)/(dx^(2...

If `y=cos2x*sin3x," then "(d^(2)y)/(dx^(2))=`

A

`-(1)/(2)\(5cos5x+sinx)`

B

`-(1)/(2)\(25sin5x-sinx)`

C

`(1)/(2)\(25cos5x-sinx)`

D

`-(1)/(2)\(25sin5x+sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative of the function \( y = \cos(2x) \sin(3x) \), we can follow these steps: ### Step 1: Rewrite the function using the product-to-sum identities We can use the product-to-sum identity for \( 2 \cos A \sin B \): \[ 2 \cos A \sin B = \sin(A + B) - \sin(A - B) \] In our case, \( A = 2x \) and \( B = 3x \). Thus, we can write: \[ y = \cos(2x) \sin(3x) = \frac{1}{2} \left( \sin(5x) - \sin(-x) \right) \] Since \( \sin(-x) = -\sin(x) \), we have: \[ y = \frac{1}{2} \left( \sin(5x) + \sin(x) \right) \] ### Step 2: Find the first derivative \( \frac{dy}{dx} \) Now, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{d}{dx}[\sin(5x)] + \frac{d}{dx}[\sin(x)] \right) \] Using the chain rule, we find: \[ \frac{d}{dx}[\sin(5x)] = 5 \cos(5x) \quad \text{and} \quad \frac{d}{dx}[\sin(x)] = \cos(x) \] Thus, \[ \frac{dy}{dx} = \frac{1}{2} \left( 5 \cos(5x) + \cos(x) \right) \] ### Step 3: Find the second derivative \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{1}{2} \left( \frac{d}{dx}[5 \cos(5x)] + \frac{d}{dx}[\cos(x)] \right) \] Using the chain rule again: \[ \frac{d}{dx}[5 \cos(5x)] = -25 \sin(5x) \quad \text{and} \quad \frac{d}{dx}[\cos(x)] = -\sin(x) \] Thus, \[ \frac{d^2y}{dx^2} = \frac{1}{2} \left( -25 \sin(5x) - \sin(x) \right) \] This simplifies to: \[ \frac{d^2y}{dx^2} = -\frac{1}{2} (25 \sin(5x) + \sin(x)) \] ### Final Answer \[ \frac{d^2y}{dx^2} = -\frac{1}{2} (25 \sin(5x) + \sin(x)) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=2cosx+3sinx-cos2x," then "(d^(2)y)/(dx^(2))+y=

If y=sin3x cos5x, then (d^(2)y)/(dx^(2))=?

If y =5 cos x -3 sin x," then " (d^(2)y)/(dx^(2)) is equal to :

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If y = sin3x then (d^2y)/(dx^2) =?

If y = 5 cos x - 3 sin x, then (d^2y)/(dx^2) is equal to :

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If y=(cos x-sin x)/(cos x+sin x) then ((d^(2)y)/(dx^(2)))/((dy)/(dx))=

If : y=cos^(2)((3x)/(2))-sin^(2)((3x)/(2))," then: "(d^(2)y)/(dx^(2))=

If y= sin x+cos x then (d^(2)y)/(dx^(2)) is :-