Home
Class 12
MATHS
If y=cos(2cos^(-1)x)," then "y''=...

If `y=cos(2cos^(-1)x)," then "y''=`

A

3

B

4

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative \( y'' \) of the function \( y = \cos(2 \cos^{-1}(x)) \). ### Step-by-Step Solution: 1. **Rewrite the Function Using an Identity**: We start with the function: \[ y = \cos(2 \cos^{-1}(x)) \] We can use the trigonometric identity: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] Here, let \( \theta = \cos^{-1}(x) \). Thus, we can rewrite \( y \) as: \[ y = 2 \cos^2(\cos^{-1}(x)) - 1 \] 2. **Simplify Using the Inverse Function**: Since \( \cos(\cos^{-1}(x)) = x \), we have: \[ \cos^2(\cos^{-1}(x)) = x^2 \] Therefore, substituting this back into the equation for \( y \): \[ y = 2x^2 - 1 \] 3. **Find the First Derivative**: Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(2x^2 - 1) \] The derivative of \( 2x^2 \) is \( 4x \) and the derivative of \( -1 \) is \( 0 \): \[ \frac{dy}{dx} = 4x \] 4. **Find the Second Derivative**: Next, we differentiate \( \frac{dy}{dx} \) to find \( y'' \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(4x) \] The derivative of \( 4x \) is \( 4 \): \[ y'' = 4 \] ### Final Answer: Thus, the second derivative \( y'' \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)x-cos^(-1)y=alpha, then x^(2)+y^(2)-2xy cos alpha is equal to

If cos^(-1)x+cos^(-1)y=pi/2 then prove that cos^(-1)x=sin^(-1)y

If : cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi, " then :" x (y+z)+y(z+x)+z(x+y)=

If sec^(-1)x=cos ec^(-1)y, then cos^(-1)((1)/(x))=cos^(-1)((1)/(y))=

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, then x^(2)+y^(2)+z^(2)+2xyz=12(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)zxy+yz+zx=x+y+z-1(x+(1)/(x))+(y+(1)/(y))+(z+(1)/(z))>=6

If cos^(-1)x+cos^(-1)y=theta show that x^(2)-2xy cos theta+y^(2)=sin^(2)theta

If cos(x-y)=1 then cos x+cos y=

Let y(x) be the solution of the differential equation (dy)/(dx)+(3y)/(cos^(2)x)=(1)/(cos^(2)x) and y((pi)/(4))=(4)/(3) then vaue of y(-(pi)/(4)) is equal to (a)-(4)/(3)(b)(1)/(3)( c) e^(6)+(1)/(3)(d)3