Home
Class 12
MATHS
If y=cos^(-1)(1/x^(3))," then: "(dy)/(dx...

If `y=cos^(-1)(1/x^(3))," then: "(dy)/(dx)=`

A

`(3)/(x^(4)*sin[cos^(-1((1/(x^(3))))]`

B

`(3)/(x^(2)*sin[cos^(-1)(1)/(x^(3)))]`

C

`(3)/(xsqrt(x^(6)-1))`

D

`(-3)/(xsqrt(x^(6)-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \cos^{-1}\left(\frac{1}{x^3}\right) \), we will follow these steps: ### Step 1: Differentiate using the derivative formula for \( \cos^{-1}(x) \) The derivative of \( \cos^{-1}(u) \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] where \( u = \frac{1}{x^3} \). ### Step 2: Find \( \frac{du}{dx} \) Now, we need to differentiate \( u = \frac{1}{x^3} \): \[ u = x^{-3} \] Using the power rule: \[ \frac{du}{dx} = -3x^{-4} = -\frac{3}{x^4} \] ### Step 3: Substitute \( u \) into the derivative formula Next, we substitute \( u \) back into the derivative formula. We first need to calculate \( 1 - u^2 \): \[ u^2 = \left(\frac{1}{x^3}\right)^2 = \frac{1}{x^6} \] Thus, \[ 1 - u^2 = 1 - \frac{1}{x^6} = \frac{x^6 - 1}{x^6} \] ### Step 4: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula Now we can substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - \left(\frac{1}{x^3}\right)^2}} \cdot \left(-\frac{3}{x^4}\right) \] This simplifies to: \[ \frac{dy}{dx} = \frac{3}{x^4 \sqrt{1 - \frac{1}{x^6}}} \] ### Step 5: Simplify the expression Now we simplify the square root: \[ \sqrt{1 - \frac{1}{x^6}} = \sqrt{\frac{x^6 - 1}{x^6}} = \frac{\sqrt{x^6 - 1}}{x^3} \] Substituting this back into our derivative gives: \[ \frac{dy}{dx} = \frac{3}{x^4} \cdot \frac{x^3}{\sqrt{x^6 - 1}} = \frac{3x^3}{x^4 \sqrt{x^6 - 1}} = \frac{3}{x \sqrt{x^6 - 1}} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{3}{x \sqrt{x^6 - 1}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y = cos^(-1) x^(3) " then " (dy)/(dx)= ?

If y = cos^(-1) (4x^(3) -3x) " then " (dy)/(dx)= ?

If y=(cos^(-1)x)/(1+x^(2)),"then " dy/dx=

If y=cos ^(-1) sqrt(1+x^(2)),then (dy)/(dx) =

If y=cos^(-1) (cos x),"then " (dy)/(dx) is

If y = cos^(2) x^(3) " then "(dy)/(dx) = ?

If y=cos((1)/(2)cos^(-1)x)," then "(dy)/(dx)=

If y= cos ^(-1)sqrt (1-x) ,then (dy)/(dx) =

If y=cos^(-1) (1-2 sin^(2) x),"then " dy/dx=

If y=cos ^(-1) ((1)/( 3x-4x^(3))) ,then (dy)/(dx)