Home
Class 12
MATHS
If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: ...

If `(d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=`

A

`(3x)/(1+x^(3))`

B

`(3x^(2))/(1+x^(6))`

C

`(-6x^(5))/((1+x^(6))^(2))`

D

`(-6x^(5))/(1+x^(6))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate \( f(x^3) \) given that \( \frac{d}{dx}[f(x)] = \frac{1}{1+x^2} \). ### Step-by-Step Solution: 1. **Identify the given information**: We know that \( \frac{d}{dx}[f(x)] = \frac{1}{1+x^2} \). 2. **Use the chain rule for differentiation**: We need to differentiate \( f(x^3) \). According to the chain rule, if \( y = f(g(x)) \), then: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \] Here, \( g(x) = x^3 \). 3. **Differentiate \( g(x) \)**: Calculate \( g'(x) \): \[ g'(x) = \frac{d}{dx}[x^3] = 3x^2 \] 4. **Substitute \( g(x) \) into \( f'(x) \)**: We need to find \( f'(g(x)) = f'(x^3) \). From the given information, we have: \[ f'(x) = \frac{1}{1+x^2} \] Therefore: \[ f'(x^3) = \frac{1}{1+(x^3)^2} = \frac{1}{1+x^6} \] 5. **Combine the results**: Now substitute \( f'(x^3) \) and \( g'(x) \) into the chain rule formula: \[ \frac{d}{dx}[f(x^3)] = f'(x^3) \cdot g'(x) = \frac{1}{1+x^6} \cdot 3x^2 \] 6. **Final result**: Thus, the derivative \( \frac{d}{dx}[f(x^3)] \) is: \[ \frac{3x^2}{1+x^6} \] ### Final Answer: \[ \frac{d}{dx}[f(x^3)] = \frac{3x^2}{1+x^6} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If (d(f(x))/(dx)=(1)/(1+x^(2)) then (d)/(dx){f(x^(3))} is

int[(d)/(dx)f(x)]dx=

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=

If (d)/(dx)[f(x)]=f(x), then intf(x)[g'(x)+g''(x)]dx=

If f(x)=tan^(-1)((3x-x^(3))/(1-3x^(2))) then (d)/(dx)(f(x)) is equal to

Statement 1: If differentiable function f(x) satisfies the relation 0AA x in R, and if f(x)+f(x-2)=0AA x in R, and if ((d)/(dx)f(x))_(x=a)=b, then ((d)/(dx)f(x))_(a+4000)=b Statement 2:f(x) is a periodic function with period 4.

Let phi(x) be the inverse of the function f(x) and f'=(1)/(1+x^(5)), then (d)/(dx)phi(x) is

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

Using the first principle,prove that: (d)/(dx)(f(x)g(x))=f(x)(d)/(dx)(g(x))+g(x)(d)/(dx)(f(x))

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |