Home
Class 12
MATHS
(d)/(dx)[tan^(-1)((ax-b)/(bx+a))]=...

`(d)/(dx)[tan^(-1)((ax-b)/(bx+a))]=`

A

`(1)/(1+x^(2))+(a^(2))/(a^(2)+b^(2))`

B

`(-1)/(1+x^(2))-(a^(2))/(a^(2)+b^(2))`

C

`(1)/(1+x^(2))+(a^(2))/(a^(2)+b^(2))`

D

none of theses

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left[\tan^{-1}\left(\frac{ax - b}{bx + a}\right)\right]\), we will follow these steps: ### Step 1: Let \(y = \tan^{-1}\left(\frac{ax - b}{bx + a}\right)\) This sets up our function for differentiation. ### Step 2: Let \(u = \frac{ax - b}{bx + a}\) We will differentiate \(y\) with respect to \(x\) using the chain rule. ### Step 3: Differentiate \(y\) with respect to \(u\) Using the derivative of the arctangent function: \[ \frac{dy}{du} = \frac{1}{1 + u^2} \] ### Step 4: Differentiate \(u\) with respect to \(x\) To find \(\frac{du}{dx}\), we will apply the quotient rule: \[ u = \frac{f(x)}{g(x)} \quad \text{where } f(x) = ax - b \text{ and } g(x) = bx + a \] The quotient rule states: \[ \frac{du}{dx} = \frac{f' g - f g'}{g^2} \] Calculating \(f'\) and \(g'\): \[ f' = a, \quad g' = b \] Thus, \[ \frac{du}{dx} = \frac{(a)(bx + a) - (ax - b)(b)}{(bx + a)^2} \] ### Step 5: Simplify \(\frac{du}{dx}\) Expanding the numerator: \[ = \frac{abx + a^2 - abx + b^2}{(bx + a)^2} = \frac{a^2 + b^2}{(bx + a)^2} \] ### Step 6: Combine using the chain rule Now, we can combine the derivatives using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{1 + u^2} \cdot \frac{a^2 + b^2}{(bx + a)^2} \] ### Step 7: Substitute \(u\) back into the equation We need to substitute \(u = \frac{ax - b}{bx + a}\): \[ 1 + u^2 = 1 + \left(\frac{ax - b}{bx + a}\right)^2 = \frac{(bx + a)^2 + (ax - b)^2}{(bx + a)^2} \] ### Step 8: Final expression for \(\frac{dy}{dx}\) Thus, we have: \[ \frac{dy}{dx} = \frac{(a^2 + b^2)}{(bx + a)^2} \cdot \frac{(bx + a)^2}{(bx + a)^2 + (ax - b)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{a^2 + b^2}{(bx + a)^2 + (ax - b)^2} \] ### Step 9: Conclusion Thus, the final result is: \[ \frac{d}{dx}\left[\tan^{-1}\left(\frac{ax - b}{bx + a}\right)\right] = \frac{a^2 + b^2}{(bx + a)^2 + (ax - b)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

(d)/(dx)[tan^(-1)((sinx)/(1+cosx))]=

At x=(pi)/(4),(d)/(dx)[tan^(-1)((cosx)/(1+sinx))]=

(d)/(dx)[sec(tan^(-1)x)]=

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

(d)/(dx)[tan^(-1)((10x)/(4-6x^(2)))]=

(d)/(dx)[tan{tan^(-1)((x)/(a))-tan^(-1)((x-a)/(x+a))}]=

d/(dx)[tan^(-1)((a-x)/(1+ax))] is equal to

(d)/(dx)[tan^(-1)((asinx+bcosx)/(acosx-bsinx))]=