Home
Class 12
MATHS
(d)/(dx)[sqrt((1-sin2x)/(1+sin2x))]=...

`(d)/(dx)[sqrt((1-sin2x)/(1+sin2x))]=`

A

`sec^(2)x`

B

`-sec^(2)((pi)/(4)-x)`

C

`sec^(2)((pi)/(4)-x)`

D

none of theses

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} \), we will follow these steps: ### Step 1: Simplify the expression inside the square root We start with the expression: \[ y = \sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} \] Using the half-angle identity, we can express \( \sin 2x \) as \( 2 \sin x \cos x \): \[ y = \sqrt{\frac{1 - 2 \sin x \cos x}{1 + 2 \sin x \cos x}} \] ### Step 2: Rewrite the numerator and denominator We can rewrite \( 1 \) in both the numerator and the denominator as \( \cos^2 x + \sin^2 x \): \[ y = \sqrt{\frac{\cos^2 x + \sin^2 x - 2 \sin x \cos x}{\cos^2 x + \sin^2 x + 2 \sin x \cos x}} = \sqrt{\frac{(\cos x - \sin x)^2}{(\cos x + \sin x)^2}} \] ### Step 3: Simplify the square root Now we can simplify the square root: \[ y = \frac{\cos x - \sin x}{\cos x + \sin x} \] ### Step 4: Differentiate using the quotient rule We will differentiate \( y \) using the quotient rule: \[ \frac{dy}{dx} = \frac{(u'v - uv')}{v^2} \] where \( u = \cos x - \sin x \) and \( v = \cos x + \sin x \). Calculating \( u' \) and \( v' \): - \( u' = -\sin x - \cos x \) - \( v' = -\sin x + \cos x \) Now substituting into the quotient rule: \[ \frac{dy}{dx} = \frac{(-\sin x - \cos x)(\cos x + \sin x) - (\cos x - \sin x)(-\sin x + \cos x)}{(\cos x + \sin x)^2} \] ### Step 5: Simplify the derivative Expanding the numerator: 1. First term: \[ (-\sin x - \cos x)(\cos x + \sin x) = -\sin x \cos x - \sin^2 x - \cos^2 x - \cos x \sin x = -2\sin x \cos x - 1 \] 2. Second term: \[ (\cos x - \sin x)(-\sin x + \cos x) = -\cos x \sin x + \cos^2 x + \sin^2 x - \sin x \cos x = 1 - 2\sin x \cos x \] Combining these: \[ \frac{dy}{dx} = \frac{-2\sin x \cos x - 1 - (1 - 2\sin x \cos x)}{(\cos x + \sin x)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-2}{(\cos x + \sin x)^2} \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = -\frac{2}{(\cos x + \sin x)^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(sqrt(x sin x))=?

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

" Q."3 (d)/(dx){(sin x+cos x)/(sqrt(1+sin2x))} =

Differentiate w.r.t.x the function cot^(^^)(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)(sqrt(1-sin x))],0

Find (d)/(dx)[sqrt(1-x^(2))sin^(-1)x-x].

(d)/(dx)(sqrt(x)+(1)/(sqrt(x)))^(2) =

Differentiate 'tan^(^^)(-1){(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))},darr backslash0

Differentiate the following functions with respect to x:tan^(-1){sqrt((1+sin x)/(1-sin x))},-(pi)/(2)

Differentiate the following functions with respect to x:tan^(-1){sqrt((1+sin x)/(1-sin x))},-(pi)/(2)

(d)/(dx)[sin(2tan^(-1)sqrt((1+x)/(1-x)))]=