Home
Class 12
MATHS
If : y=sqrt((1-x)(1+x))," then: "...

If : `y=sqrt((1-x)(1+x))," then: "`

A

`(1-x^(2))*(dy)/(dx)-xy=0`

B

`(1-x^(2))*(dy)/(dx)+xy=0`

C

`(1-x^(2))*(dy)/(dx)-2xy=0`

D

`(1-x^(2))*(dy)/(dx)+2xy=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sqrt{(1-x)(1+x)} \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ y = \sqrt{(1-x)(1+x)} \] This can be simplified using the difference of squares: \[ y = \sqrt{1 - x^2} \] ### Step 2: Differentiate using the chain rule To differentiate \( y \), we will use the chain rule. The derivative of \( \sqrt{u} \) is \( \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} \). Here, \( u = 1 - x^2 \). First, we find \( \frac{du}{dx} \): \[ u = 1 - x^2 \implies \frac{du}{dx} = -2x \] Now, applying the chain rule: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) \] ### Step 3: Simplify the derivative Now we simplify the expression: \[ \frac{dy}{dx} = \frac{-2x}{2\sqrt{1 - x^2}} = \frac{-x}{\sqrt{1 - x^2}} \] ### Step 4: Write the final answer Thus, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{-x}{\sqrt{1 - x^2}} \] ### Step 5: Formulate the differential equation We know that \( y^2 = 1 - x^2 \). Therefore, we can express \( y^2 \) in terms of \( x \): \[ y^2 = 1 - x^2 \implies x^2 = 1 - y^2 \] Now, substituting \( y^2 \) back into our derivative: \[ y^2 \frac{dy}{dx} + xy = 0 \] This gives us the required differential equation. ### Final Answer The final differential equation is: \[ (1 - x^2) \frac{dy}{dx} + xy = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt((1-x)/(1+x)), prove that (1-x^(2))(dy)/(dx)+y=0

If y=sqrt(x+1)+sqrt(x-1)," then: "2sqrt(x^(2)-1)*(dy)/(dx)=

If y=sqrt((1+tan x)/(1-tan x)) then (dy)/(dx)= is equal to

If y=sqrt((1-x)/(1+x)),quad prove that ((1-x^(2))dy)/(dx)+y=0

If y=sqrt((1-x)/(1+x)), find (dy)/(dx) and prove that (1-x^(2))(dy)/(dx)+y=0

If : y=sqrt((1+e^(x))/(1-e^(x)))," then: "(dy)/(dx)=

If exp(m)=e^(m)" and "y=exp[sqrt((x-1)/(x+1))]," then "(x^(2)-1)y_(1)=

Draw the graph of y=sqrt((1-x)/(1+x)) .

If y=(1)/(sqrt(x^(2)-x+1)) , then (dy)/(dx)=