Home
Class 12
MATHS
If y=(tanx+cotx)/(tanx-cotx)," then: "(d...

If `y=(tanx+cotx)/(tanx-cotx)," then: "(dy)/(dx)=`

A

`2sec2x*tan2x`

B

`sec2x*tan2x`

C

`-sec2x*tan2x`

D

`-2sec2x*tan2x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{\tan x + \cot x}{\tan x - \cot x} \), we will follow these steps: ### Step 1: Rewrite the function We know that \( \cot x = \frac{1}{\tan x} \). Therefore, we can rewrite \( y \) as: \[ y = \frac{\tan x + \frac{1}{\tan x}}{\tan x - \frac{1}{\tan x}} \] ### Step 2: Simplify the expression To simplify the expression, we can multiply the numerator and the denominator by \( \tan x \): \[ y = \frac{\tan^2 x + 1}{\tan^2 x - 1} \] ### Step 3: Use the identity for secant We know that \( \tan^2 x + 1 = \sec^2 x \) and \( \tan^2 x - 1 = \sec^2 x - 2 \). Thus, we can rewrite \( y \) as: \[ y = \frac{\sec^2 x}{\tan^2 x - 1} \] ### Step 4: Rewrite using cosine Using the identity \( \tan^2 x = \frac{1 - \cos 2x}{\sin^2 2x} \), we can express \( y \) in terms of cosine: \[ y = \frac{1 + \tan^2 x}{\tan^2 x - 1} = \frac{1 + \tan^2 x}{\sec^2 x - 2} \] ### Step 5: Differentiate \( y \) Now we will differentiate \( y \) with respect to \( x \): Using the quotient rule: \[ \frac{dy}{dx} = \frac{(v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx})}{v^2} \] where \( u = \sec^2 x \) and \( v = \tan^2 x - 1 \). ### Step 6: Calculate derivatives Calculating the derivatives: - \( \frac{du}{dx} = 2 \sec^2 x \tan x \) - \( \frac{dv}{dx} = 2 \tan x \sec^2 x \) ### Step 7: Substitute back into the quotient rule Substituting back into the quotient rule: \[ \frac{dy}{dx} = \frac{(\tan^2 x - 1)(2 \sec^2 x \tan x) - (\sec^2 x)(2 \tan x \sec^2 x)}{(\tan^2 x - 1)^2} \] ### Step 8: Simplify the expression After simplification, we find: \[ \frac{dy}{dx} = -2 \sec 2x \tan 2x \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -2 \sec 2x \tan 2x \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt((1+tanx)/(1-tanx))," then: "(dy)/(dx)=

(tanx-cotx)^(2)

If y=cot^(-1)(cotx), then (dy)/(dx) is

intdx/(4tanx+4cotx)

y=x^(tanx) then (dy)/(dx) is

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

int(1)/(tanx+cotx)dx=

y=(tanx)^(cotx)+(cotx)^(tanx)

If y=(tanx)^(cotx) , then (dy)/(dx) is equal to......

If y=(e^(x)-tanx)/(x^(n)+cotx) , then find (dy)/(dx)