Home
Class 12
MATHS
(d)/(dx)((secx+tanx)/(secx-tanx))=...

`(d)/(dx)((secx+tanx)/(secx-tanx))=`

A

`(2*cosx)/((1-sinx)^(2))`

B

`(cosx)/((1-sinx)^(2))`

C

`(2*cosx)/((1-sinx))`

D

none of theses

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left(\frac{\sec x + \tan x}{\sec x - \tan x}\right)\), we will use the quotient rule and some trigonometric identities. Here’s a step-by-step solution: ### Step 1: Identify the function Let \(y = \frac{\sec x + \tan x}{\sec x - \tan x}\). ### Step 2: Apply the Quotient Rule The quotient rule states that if you have a function \(\frac{u}{v}\), then the derivative is given by: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, \(u = \sec x + \tan x\) and \(v = \sec x - \tan x\). ### Step 3: Differentiate \(u\) and \(v\) First, we need to find \(\frac{du}{dx}\) and \(\frac{dv}{dx}\). 1. **Differentiate \(u\)**: \[ \frac{du}{dx} = \frac{d}{dx}(\sec x) + \frac{d}{dx}(\tan x) = \sec x \tan x + \sec^2 x \] 2. **Differentiate \(v\)**: \[ \frac{dv}{dx} = \frac{d}{dx}(\sec x) - \frac{d}{dx}(\tan x) = \sec x \tan x - \sec^2 x \] ### Step 4: Substitute into the Quotient Rule Now substitute \(u\), \(v\), \(\frac{du}{dx}\), and \(\frac{dv}{dx}\) into the quotient rule: \[ \frac{d}{dx}\left(\frac{\sec x + \tan x}{\sec x - \tan x}\right) = \frac{(\sec x - \tan x)(\sec x \tan x + \sec^2 x) - (\sec x + \tan x)(\sec x \tan x - \sec^2 x)}{(\sec x - \tan x)^2} \] ### Step 5: Simplify the numerator Let’s simplify the numerator: 1. Expand both products: \[ (\sec x - \tan x)(\sec x \tan x + \sec^2 x) = \sec x \tan x \sec x - \tan x \sec x \tan x + \sec^2 x \sec x - \tan x \sec^2 x \] \[ = \sec^2 x \tan x - \tan^2 x \sec x + \sec^3 x - \tan x \sec^2 x \] 2. For the second part: \[ (\sec x + \tan x)(\sec x \tan x - \sec^2 x) = \sec x \tan x \sec x + \tan x \sec x \tan x - \sec^2 x \sec x - \tan x \sec^2 x \] \[ = \sec^2 x \tan x + \tan^2 x \sec x - \sec^3 x - \tan x \sec^2 x \] 3. Combine these results: \[ \text{Numerator} = \sec^2 x \tan x - \tan^2 x \sec x + \sec^3 x - \tan x \sec^2 x - (\sec^2 x \tan x + \tan^2 x \sec x - \sec^3 x - \tan x \sec^2 x) \] \[ = 2\sec^3 x - 2\tan^2 x \sec x \] ### Step 6: Write the final derivative Thus, the derivative is: \[ \frac{d}{dx}\left(\frac{\sec x + \tan x}{\sec x - \tan x}\right) = \frac{2(\sec^3 x - \tan^2 x \sec x)}{(\sec x - \tan x)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)((cotx-tanx)/(cotx+tanx))=

(d)/(dx)[tan^(-1)[(secx-tanx)]=

d/(dx)(secx) is :

int(tanx)/(secx+tanx)dx=

tan^(-1)(secx+tanx)

Find the differentiation of ((secx+tanx)/(secx-tanx)) w.r.t. \ x

int(secx)/(log(secx+tanx))dx=

int(1)/(secx+tanx)dx=

int((secx)/(secx-tanx))dx equals

Differentiate wrt x : (sec x-tanx)/(secx+tanx)